Methane Monster’s Grumbling Goes Global: 570 Methane Plumes Discovered on Atlantic Ocean Sea Floor

Greenhouse gas concentrations spike — heating the atmosphere and the deep ocean after a period of glaciation during which vast stores of carbon accumulated. Massive volumes of this carbon lay dormant — trapped in frozen ground and in clathrates on the sea bed. As the ocean and airs warm, these carbon stores release causing a massive spike of additional greenhouse gasses to hit the atmosphere and setting off ever-more-rampant heating. The cycle continues until much of these carbon stores out-gas, pushing the Earth into a hothouse state.

Sound chillingly familiar?

What I’ve just described is the process that most scientists believe occurred during the worst mass extinction event in the geological past — the Permian Extinction. A hothouse event that killed 95% of life in the oceans and 70% of life on land. And what humans are now doing to the Earth’s airs and waters through CO2 and related greenhouse gas emissions may well be shockingly similar.

Large methane release over East Siberian Sea August 2014

(Substantial methane release from the East Siberian Sea surface during early August likely in the range of 0.5 to 1 megatons points toward both atmospheric methane overburden and likely carbon store instability and large scale out-gassing in the Arctic. Image credit: Sam Carana and NOAA.)

From the Arctic tundra to the Arctic Ocean sea bed to the Atlantic Ocean, we have growing evidence of methane and CO2 releases from carbon stores that may well be at the start of just such a large scale feedback. Time and time again, we see evidence of significant (but not yet catastrophic) emissions from Arctic methane stores (see image above). With each passing year, the methane overburden in the Arctic air grows. And we have had increasing evidence of a growing volume of releases from the East Siberian Arctic Shelf sea bed, to the methane emitting melt lakes proliferating over the thawing permafrost, to the chilling and terrifying methane blow holes discovered this year in Siberia.

As of 2011, many Arctic scientists believed that human-caused heating could set off methane and CO2 emissions from that region equivalent to between 10 and 35 percent or more of current human fossil fuel burning by the end of this century. The lower boundary of this range is with rapid reductions in human greenhouse gas emissions, the upper boundary is under business as usual. Such a 35 percent equivalent emission, happening year on year for centuries, would be more than enough to push Earth into a runaway hothouse scenario without any further human greenhouse gas releases. And it is this scenario, or the even more chilling worse case of very rapidly ramping Arctic methane outbursts, that we should be very concerned about.

Atlantic Methane Hydrate Destabilization off US East Coast

Unfortunately, the vast carbon store in the Arctic is not the only potential source of heating feedback carbon release. For around the world, upon and beneath the ocean sea bed, billions of tons of methane lay stored in clathrate structures. These stores are separate from the large carbon deposits in the Arctic. But they are no less dangerous.

In 2012, Nature issued a study that found a store of clathrates composing billions of tons of methane was now destabilizing off the US East Coast. The study predicted large-scale releases in the multi-gigaton range from the southern region of the East Coast methane clathrate store due both to changes in the Gulf Stream circulation and to warming bottom waters — both impacts set off by human-caused climate change. The study was uncertain how fast such a release could occur, but noted that the eventual release was likely due to wide-scale clathrate degradation associated with ocean bottom warming.

Methane Seep off US East Coast

(Methane Seep off US East Coast. Image source: Nature.)

This year, research vessels returned to the region and found 570 plumes of methane venting from destabilized clathrate stores there. This result was surprising due to the fact that only three methane seep sources had previously been identified. The plumes were discovered in 50 to 1,500 meters of water, with most of the seeps occurring at between 250 and 600 meters depth, along a zone stretching from Cape Hatteras to Georges Bank. The seeps ranged in age from recent to 100 or even 1000 or more years old. Overall, the prevalence of seeps was more widespread than expected.

“This is the first time anyone has systematically mapped an entire margin,” Christian Berndt, a marine geophysicist at GEOMAR in Kiel, Germany, who was not involved in the study, said in an interview to Science Magazine. “They found that there was much more methane coming out than was suspected beforehand.”

Currently, only a small amount of the methane being released from the sea bed off the US East Coast is likely hitting the atmosphere and is probably not contributing anywhere near the volume of known emission sources from the East Siberian Arctic Shelf. Most of the gas is just absorbed by the water column, increasing acidification in the region and contributing to anoxia. But the known clathrate store off the US East Coast is very significant and large scale releases could result in much more widespread anoxia, acidification, and provide a substantial atmospheric heating feedback to human-caused warming. Very large and catastrophic outbursts could also result in slope collapse and generate tsunamis along the US East Coast. A concern that researchers may also need to further investigate.

Overall, as much as 300 to 400 gigatons of methane could be at risk and even a fraction of this store hitting the atmosphere would cause serious and lasting harm.

Overall, it is estimated that at least 30,000 methane seeps like the ones recently discovered off the US East Coast may now be active with potentially 10,000 in the East Coast region now under investigation. The current study provides a good base line for further exploration of what may well be a rather significant problem going forward.

“It highlights a really key area where we can test some of the more radical hypotheses about climate change,” said John Kessler, a professor at the University of Rochester, in an interview with the New York Times. “How will those release rates accelerate as bottom temperature warms?”

The acceleration would indeed have to be substantial to add to the already significant and troubling Arctic methane and CO2 release. But the sea bed stores are vast and the rate of human warming is very rapid. So the global ocean clathrate store is something to keep under close watch and the discovery of yet one more source that is already emitting at faster than expected rates is not at all comforting.

Links:

Widespread Methane Leakage From Sea Floor on Northern US Atlantic Margin

From Glaciation to Hothouse — Why the Permian Extinction is Pertinent to Human Warming

Recent Changes to the Gulf Stream Causing Widespread Hydrate Gas Destabilization

New Study Shows East Coast Hydrates Destabilizing

High Risk of Permafrost Thaw

Sam Carana

NOAA

Scientists Discover Hundreds of Methane Leaks Bubbling Up From the Atlantic Sea Floor

Sea Level Rise Found to Cause Slope Collapse, Tsunamis, Methane Release

Greenland’s Late August Rain Over Melt Ponds is a Glacial Outburst Flood Hazard

Glacial melt ponding on steep ice faces. Above freezing temperatures for an extended period. Storms delivering rainfall to the glacier surface.

These three events are a bad combination and one that, until recently, we’ve never seen before for Greenland. It is a set of circumstances directly arising from a human-driven warming of the great ice sheet. And it is one that risks a highly violent and energetic event in which melt ponds over-top and glaciers are flushed and ripped apart by surges of water rushing for scores of miles over and through the ice sheet. Major melt pulse events called glacier outburst floods that can result in catastrophically large volumes of water and broken ice chunks issuing from the towering, melting glaciers of Greenland and Antarctica.

It’s a risk we face now, as the circumstances driving the risk of such an event are present today.

Rain over Ice on August 21, 2014

Over the past four days a high amplitude wave in the Jet Stream and coordinate domes of high pressure over Greenland have delivered well above average temperatures for the great Northern Hemisphere ice sheet. Near and just to the east of the Jakobshavn glacier on the West Coast of Greenland, temperatures have ranged between 5 and 10 degrees Celsius above average.

Greenland Temperatures August 21Rain over Greenland Melt Ponds on August 21, 2014

(GFS temperature and rainfall analysis for Greenland on August 21, 2014. Note the above freezing temperatures and rainfall over the region of the Jacobshavn Glacier for today. Image source: University of Maine’s Climate Reanalyzer.)

What this means is a persistence of average temperatures in the range of 34-40 degrees (F) over large sections of Greenland’s Jakobshavn glacier. Melt level readings over a region that has now experienced ongoing surface ponding for more than 60 days.

But these warm temperatures, providing yet more heat forcing to melt the ice, aren’t the only extreme weather factor for the Jakobshavn glacier today. For today has brought with it a warm, wet over-riding airmass emerging from Baffin Bay and the Atlantic Ocean to the south. The warm air, coming into contact with the cooler glacier air is condensing and disgorging a series of rainstorms, dumping above-freezing water into the Jakobshavn’s already swelling pools.

Some of these effects are directly visible in the LANCE MODIS satellite imagery provided by NASA.

Glacial melt ponds are indicated in the satellite shot below by light-to-dark blue splotches on the glacier surface. Shallow surface melt ponding and pooling is indicated by a thin skein of light blue. In the left frame below, you can see the extensive and large melt ponds in the region of the Jakobshavn Glacier on August 18, 2014. For reference, the largest of these ponds are between 2 and 4 kilometers across. Also note the pale blue color of the ice near the larger ponds, indicating extensive smaller ponds in the region.

In the right frame, we have today’s LANCE-MODIS satellite shot. You will note that the entire frame is covered by cloud but that you can still see the blue undertone of the melting glacier below the rain-bearing clouds.

Melt Ponds, Jakobshavn August 18Rain over Melt Ponds

(LANCE MODIS satellite shot of the Jakobshavn Glacier on August 18 [left frame] and August 20 [right frame]. Note the widespread melt ponds and blue ice indicating smaller ponds over the glacier structure. Image source: LANCE MODIS.)

Assessing Glacial Outburst Flood Risk

Some day, as Greenland continues to warm under the human heat forcing and as more hot air invasions ride up over the ice sheet, a period of warmth followed by rainstorms may well set off a major outburst flood event. The water content in melt ponds over the glacier may well be far greater than what we see now and a series of over topping events, starting higher on the ice sheet and magnifying toward the ice sheet base, would set of a chain of events leading to such a flood.

Risks for this kind of event today may well be moderate to low. The glaciers at this point are craggy and much of the flood waters shunt through holes in the ice to water pockets or to the glacier base. But eventually, as the glacier contains more water through subsequent years of melt, flooding and damming will be more prevalent throughout the ice sheet. And so risks will likely be on the rise.

Other than similar events occurring in the Himilayas, we don’t really have much of a context by which to judge risk for large Greenland outburst flood events. We do know that melt ponding is now quite extensive in this region and we do know that the glacier itself is rather unstable — moving with rapid speed toward the ocean and containing pockets of melted water from past melt pond formation over the last two decades.

For today, I’m pointing out the current rainfall over ice and melt ponding event as part of a larger and dangerous trend, one that is likely to play a primary role in the pace and violence of Greenland melt going forward.

zodiac on greenland melt pond

(Photograph of a zodiac on the surface of one of Greenland’s very large melt ponds. Image source: Earth Observatory.)

Links:

University of Maine’s Climate Reanalyzer

LANCE MODIS

The Glacial Megaflood

Greenland Ice Loss Increases Fivefold From Late 1990s, West Antarctica Not Far Behind

In the early 1990s, it would have been hard to imagine the rates of glacial ice loss we are seeing now.

There were few ways to accurately measure the Greenland Ice Sheet’s mass. Snow fell, glaciers calved. But observations seemed to show that the great, cold ice pile over Greenland was in balance. Snow gathered at the top, glaciers calved at the edges, but human heating of the atmosphere had yet to show plainly visible effects.

At that time, climate scientists believed that changes to the ice, as a result of human caused heating, would be slow and gradual, and would probably not begin to appear in force until later in the 21st Century.

Greenland Jacobshavn July 30 2014

(Extensive surface melt ponding, dark snow near the rapidly melt Jakobshavn Glacier on the West Coast of Greenland in early August of 2014. Image source: LANCE MODIS.)

Ice Sheet Response Starts Too Soon

By the late 1990s, various satellites had been lofted to measure the gravity, mass and volume of structures on the Earth’s surface. These sensors, when aimed at the great ice sheets, found that Greenland, during a period of 1997 to 2003 was losing mass at a rate of about 83 cubic kilometers each year.

This rate of ice loss was somewhat small when compared to the vastness of the ice sheet. But the appearance of loss was early and, therefore, some cause for concern. More monitoring of the ice sheet took place as scientists continued their investigation, for it appeared that the ice sheet was more responsive to human warming than initially believed.

A Doubling After Just Six Years

By 2009 another set of measures was in and it found that the six year period from 2003 to 2009 showed a near doubling of ice mass loss from the Greenland Ice Sheet. Rates of loss had jumped from 83 cubic kilometers each year to around 153 cubic kilometers. The doubling caused consternation and speculation among climate scientists. Greenhouse gas heat forcing was rapidly on the rise and the world’s oceans were warming faster than expected as human emissions continued along a worst case scenario path. It appeared that the ocean was delivering heat to the ice sheet bases even as atmospheric warming was melting larger areas upon the ice sheet surface.

These changes to the massive ice sheets were occurring far more rapidly than previously considered.

Edge of Greenland Ice Sheet

(Hundreds foot high edge of the Greenland Ice Sheet in Kangerlussuaq as seen at the end of a long valley and across a cold estuary. Image source: EISCAT Scientific Association.)

The potential for a 3, 6, or even 9 foot or more sea level rise by the end of the 21st Century was raised. Perhaps even more ominous, global climate models were showing that rapid ice melt in Greenland and West Antarctica, should it occur, would play havoc with world weather systems. It was this jump in ice loss, in part, that spurred climate scientist and then head of NASA GISS, Dr. James Hansen to write his book The Storms of My Grandchildren as a warning that rapid mitigation in human greenhouse gas emissions along with a stabilization of atmospheric CO2 at 350 ppm would probably be needed to prevent severe consequences from human-caused warming.

But humans kept emitting at a break-neck pace, spending far more money to build coal, gas and oil based technology, than to reduce energy consumption through efficiencies or behavioral change or to invest in alternatives like wind and solar.

Melt Rates Surge Yet Again

And so, by January of 2014, heat forcing had continued to accumulate at a very rapid pace. CO2e heat forcing had spiked to 481 ppm, enough to melt the entire Greenland Ice Sheet and much of Antarctica as well, if maintained or increased over a long period.

And the Greenland Ice sheet was, indeed, melting at an ever faster clip. For the most recent assessment found that the loss rate from Greenland had again more than doubled — hitting a 375 cubic kilometer per year average during the period of January 2011 through January of 2014.

Greenland Ice Sheet Elevation Change

(Greenland Ice Sheet elevation change in meters as found in a recent report by the Alfred Wegner Institute. Note that all Greenland edge zones are now experience elevation losses. Due to higher elevations at the center of the ice sheet, elevation loss at the edge has an effect that speeds ice sheet motion toward the sea. The effect is similar to pushing down the edge of a plastic swimming pool, but on a much larger scale and with somewhat slower moving ice.)

It was an extraordinary rate of melt now 4.7 times faster than in the period from 1997 to 2003 and 2.5 times faster than during 2003 to 2009. But, likely, it is but one more milestone on the path to even faster melt.

The same study that found the Greenland melt acceleration also saw a tripling of the melt rate of West Antarctic since 2003 to 2009. Together, the ice sheets were found to contribute a combined mass loss of 503 cubic kilometers per year between Greenland and West Antarctic. This vast, and still apparently rising, loss now meant that the two great ice sheets were contributing at least one millimeter per year to sea level rise.

Likely Grim Future For Sea Level Rise

It is likely that mass rate losses will continue to increase until some kind of break or negative feedback comes into play. Similar rates of melt increase would mean an annual 5-8 millimeter sea level rise by 2035 due to Greenland and Antarctic melt on top of a 2-3 millimeter sea level rise from thermal expansion of the oceans and from other melt sources. But even taking into account the cooling effect at the ocean surface from ice melt and fresh water floods, one could easily envision the feared 1-3 foot sea level rise by sometime near mid century and the even more concerning 3-9 foot sea level rise amidst a very intense battle between hot and cold weather systems through to century’s end.

As of 2014, it appears the conditions leading up to the warned of “Storms of My Grandchildren” are well in play and rapidly building.

Links:

Alfred Wegner Institute: Elevation Change of the Greenland Ice Sheet

Greenland Ice Loss Doubles From Late 2000s

LANCE MODIS

The Storms of My Grandchildren

EISCAT Scientific Association

Hat Tip to TodaysGuestIs

Amazon Rainforest Wildfires Scorch Through Drought-Plagued Brazil During Southern Hemisphere Winter

It’s Winter. Sections of Brazil are experiencing their worst drought in 84 years. Sao Paulo, a city of 9 million, has 97 days of water supply left. And, again, the Great Rainforest is burning.

Over the past few decades a combination of insults including clear cutting, slash and burn agriculture, and rising instances of heatwaves and drought driven by human-caused climate change has resulted in increasingly severe impacts to forested regions around and within the Amazon. Major fires, which were once almost unheard of in the damp, wet regions of the great Amazon delta first cropped up in the late 1980s and early 1990s but have since become more widespread.

Amazon fire outbreak August 13 2014

(Wildfire outbreak in the Amazon on August 13, 2014. For reference bottom edge of frame is 180 miles. Image source: LANCE MODIS.)

Now, a combination of basement burning of root systems in the Amazon, heat, and drought are resulting in a kind of existential crisis for a region that has been described by scientists as ‘the Earth’s lungs.’ It is a situation that brings with it the ever-increasing risk of major fire outbreaks. And as of 2012 and 2013, after a period of ever-increasing burning, dry equatorial winters have brought with them extraordinarily severe fires that have torn through forested zones and threatened infrastructure. In one such instance during 2013, a major region-wide blackout was set off by a fire originating in Brazil’s rainforest.

And now the burning has begun anew.

For as of August 13 of this year, large wildfires were erupting within the Amazon near regions of cleared forest and deep within the forest interior. Over the past week, these fires expanded and became more widespread. Now, much of Brazil is under a pall of smoke from wildfires that have expanded to range over a very broad rainforest region.

Brazil Wildfires August 20 2014

(Smoke from wildfires covering almost all of the Amazon on August 20, 2014. For reference, bottom edge of frame is 1,000 miles and the Amazon River flows from middle left until it terminates at upper right into the South Atlantic. Image source: LANCE MODIS.)

News media and public reporting of fire instances within Brazil are sketchy. But the satellite picture doesn’t lie. Observational estimates place these fires in the range of 500,000 to 1,500,000 acres initially. But given the fire intensity, they are likely to burn on for weeks to months.

Conditions in Context: 3 Percent of the Amazon Lost To Fire From 1999-2010

The new fires originated in a region now known to harbor ongoing understory fires. These fires burn beneath the interlaced root systems of the Amazon and have been discovered to continue to smolder year-round. During times of intense heat and drought, these fires can break through to the surface and more intensely burn through large swaths of forestland. After burning, they sink back into the understory, waiting for another heat/drought trigger.

Last year, NASA published a study which found that fully 3 percent of the Amazon had likely been lost to fires during the period of 1999-2010. A primary culprit for these losses was found to be understory fires, which NASA identified as a significant threat to the Amazon forest system.

12 million square miles of Amazon burned

(3 percent or 33,500 square miles of a 1.2 million square mile area under investigation burned from 1999-2010 according to a 2013 NASA study. Location of fires indicated in orange.)

Perhaps most significantly, the NASA study implicated climate change as the primary cause for these fires, finding that drought and heatwaves related to increases in human heat trapping gasses had depleted ground moisture levels, resulting in a greatly increased instance of fires.

Post 2010, the satellite record indicates that these fires have continued to grow in intensity. And so the risk to the Amazon expands.

Overall, the Amazon currently stores about 120 gigatons of carbon. It represents about 10% of the global uptake of carbon from the atmosphere through forest tree and plant respiration. But as the Amazon burns and becomes deforested, it shifts from being a carbon absorber to a carbon emitter. Currently, depleted and burning areas of the Amazon are estimated to emit 500 megatons of CO2 each year. And though this has not yet tipped the balance to make the Amazon a net carbon emitter, human climate change and deforestation is driving the world’s largest rainforest rapidly in that direction.

Under human driven climate change and deforestation, the heat and drought situation will only worsen for Brazil. Even without clear cutting, the fires will expand and, eventually, the rainforest will be consumed. Without substantial mitigation action by humans, it is bound to happen. The vast carbon store that is the rainforest will almost certainly begin adding to the already rapacious human heating effect. A process that will continue for decades and will only end once the rainforest is gone entirely.

Links:

Brazil Drought: Sao Paulo Could Run Dry in Less Than 100 Days

NASA Study Shows 3 Percent of Amazon Lost to Fires from 1999 through 2010

LANCE MODIS

Forest and Climate

Effects of High Frequency Understory Fires on The Amazon Rainforest

Fire Spurs Blackout That Shuts off Power for 50 Million

Hat tip to Bernard

US Wind Hits Record Low Price of 2.5 Cents Per Kilowatt Hour; 9-12 Gigawatts of Renewable Energy Additions Ramp up for 2014

The excuses for failing to rapidly adopt renewable energy systems grow thinner and more contorted with each passing day…

During 2013, costs for wind energy plunged to record low levels as both wind and solar set to make substantial new capacity gains in 2014 and 2015, according to a recent report from the US Department of Energy.

PPA (Power Purchase Agreement) pricing for wind during 2013 plunged to the very low range of 2.5 cents per kilowatt hour after levelized costs were included for new wind energy projects. For comparison, the average range of PPAs for all new energy sources in 2013 was 2.5 to 5 cents per kilowatt hour and included wind, solar, natural gas and coal. This made wind energy the least expensive source for new energy in 2013 following a long trend of overall falling prices.

Price of Wind at all time low

(Price of wind hits all time low in 2013 at 2.5 cents per kilowatt hour. Image source: US Department of Energy.)

Solar prices also fell to within competitive ranges, leading to record adoption rates for that energy source for the US in 2013.

New wind generation is expected to hit between 4 and 6 gigawatts in 2014 and between 5 and 9 gigawatts in 2015. Overall, 13 gigawatts of new wind energy capacity is now under construction, with the bulk focusing on the wind-rich region of the central US.

Solar is also expected to make strong gains in 2014 by adding between 5 and 7 gigawatts of new capacity. Rapidly increasing US growth in solar energy installations has been led by a combination of factors including plummeting prices and a rising adoption of home solar energy through rooftop leasing arrangements targeted to save consumers money on their power bills.

By end of 2014, total installed wind capacity is expected to hit around 74 gigawatts in the US. Meanwhile, US solar capacity is likely to climb above 18 gigawatts by year end. Altogether, these combined energy sources, when taking capacity factor into account, will have produced about 5% of the US’s electricity.

US renewables forecast 2

(US renewable energy net electrical generation from 2013 [historic] through 2018 [projected]. Image source: SUN DAY Forecast using US Energy Information Agency sources.)

With new construction projects continuing, total US renewable energy generation is expected to exceed 13.4 percent by the end of 2014 and 16.11 percent by the end of 2018.

Strong Gains Necessary to Mitigate Human-Caused Climate Change, Barriers to Adoption are Now Chiefly Political

Though the combined continued net price drop and cumulative substantial renewable energy generation gains are encouraging, they will need to advance at ever faster rates if we are to have much hope for rapidly mitigating the worst effects of human caused climate change. US generative capacity additions for renewables should probably be in the range of 2-4 times their present rate of adoption and goals should be set for the total replacement of US ghg emitting generation capacity by or before 2050.

With prices for renewable electricity generation now at levels competitive with traditional fossil fuels, and, in the case of wind, far less than fossil fuels, the primary barrier to adoption is now political. Fossil fuel related organizers have, through lobbying and media related efforts, worked on a number of fronts to water down renewable energy incentive legislation and slow or block policy measures that would speed their adoption. Many of these groups are aligned with conservative members and climate change deniers in Congress, but also include a broad array of outside organizations.

These groups represent a final, but strong road block to adoption of permanent mitigations to climate change with broad ranging benefits such as practically unlimited base fuel sources and freeing economic systems from the specter of energy scarcity and insecurity. Given both the lurking risks of human-caused climate change and the prospective benefits of widespread renewable energy generation, the time for a broad push for rapid adoption of renewable energy systems is now.

Links:

US Department of Energy Wind Energy Report for 2013

SUN DAY Forecast

Price of Wind at All Time Low of 2.5 Cents Per Kilowatt Hour

Related Reading:

Major Court Clears the Way to Let Renewables onto the Grid

Proposed Coal Export Terminal Suffers Major Setback

July 2014 Shows Hottest Ocean Surface Temperatures on Record as New Warm Kelvin Wave Forms

According to NOAA’s Climate Prediction Center, July of 2014 was the 4th hottest in the 135 year global temperature record. Land surface temperatures measured 10th hottest in the global record while ocean surface temperatures remained extraordinarily hot, tying July of 2009 as the hottest on record for all years on measure over the past two centuries.

Overall, land temperatures were 0.74 C above the 1950 to 1981 average and ocean surface temperatures were 0.59 C above the same average.

These new record or near record highs come after the hottest second quarter year in the global temperature record where combined land and ocean temperatures exceeded all previous global high temperatures in the measure.

Much Hotter Than Normal July

Few regions around the globe showed cooler than average temperatures during July with zones over the east-central US, in the Atlantic just south of Greenland, and off South America in the Southern Ocean as the only regions showing cooler than normal temperatures. Record warmest temperatures ranged from Scandinavia to Iceland to Northeast Siberia, from California to Alaska to the Northeast Pacific, along a broad stretch of Pacific Ocean waters east of the Philippines and New Guinea, in pools in the North and South Atlantic Oceans off the coasts of North and South America, and in spots from Australia through the Indian Ocean to South Africa.

Land Ocean Temperature Percentiles July 2014

(Land and Ocean temperature anomalies for July of 2014. Image source: NOAA’s Climate Prediction Center.)

Overall, most of the surface of the Earth featured above average to record warmest conditions, while a minority of the Earth’s surface showed average or below average temperatures.

These new global heat records were reached even as slightly cooler than average waters began to up-well in the critical Eastern Equatorial Pacific region. A powerful Kelvin Wave that initiated during late winter and spring of 2014 failed to set off a summer El Nino and finally faded out, reducing heat transfer from Pacific Ocean waters to atmosphere. Even so, the ocean to atmosphere heat dump was enough to set off two record hot months for May and June and a record hot ocean surface month for July as ocean surface waters remained extraordinarily warm across many regions.

Hot Water August 18, 2014

(Ocean surface temperatures remained at or near record hot levels during July and August of 2014 despite a failed El Nino development in the Equatorial Pacific. The above graphic shows global water temperatures for August 18 at an extraordinary +1.13 C above the already hotter than normal 1979 to 2000 average. Image source: University of Maine.)

New Warm Kelvin Wave Begins to Form

Though the atmosphere failed to respond to a powerful Kelvin Wave issuing across the Pacific earlier this year, stifling the development of a predicted El Nino, it appears a new warm Kelvin Wave is now beginning to form. Moderate west wind back bursts near New Guinea initiated warm water down-welling and propagation across the Pacific Ocean during July and early August. The down-welling warmth appeared to link up with warm water upwelling west of New Guinea and began a thrust across the Pacific over the past week.

As of the most recent sub-sea float analysis, anomalies in the new Kelvin Wave ranged as warm as 4-5 C above average:

Kelvin Wave August 14, 2014

(New warm Kelvin Wave forming in the Equatorial Pacific. Image source: Climate Prediction Center.)

These sub-sea temps are rather warm for an early phase Kelvin Wave and may indicate another ocean to atmosphere heat delivery is on its way, despite a broader failure of El Nino to form by this summer.

Typically, strong Kelvin Waves provide the energy necessary for El Nino to form. The heating of surface waters due to warm water upwelling in the Equatorial Pacific tends to set off atmospheric feedbacks that perpetuate an El Nino pattern in which waters remain warmer than average in the Central and Eastern Equatorial Pacific for many months. Without these atmospheric responses, El Nino cannot form.

During 2013 and 2014, strong Kelvin Waves forming during spring time were not enough to over-ride prevailing and historically strong trade wind patterns thereby allowing El Nino to emerge.

Atmospheric ‘Hiatus’ is No Halt to Global Warming

During recent years, scientific analysis has confirmed that a negative Pacific Decadal Oscillation together with record strength trade winds has suppressed El Nino formation and ocean to atmosphere heat transfer, leading to a temporary slow down in atmospheric temperature increases even as world ocean temperatures spiked.

heat_content2000m

(Global ocean heat content for 0-2000 meters of depth shows inexorable upward trend despite the so-called atmospheric warming hiatus. Image source: NOAA Ocean Heat Content.)

This natural variability, which typically lasts for 20-30 years began around the year 2000 and has continued through 2014. During such periods of negative PDO, we would expect rates of atmospheric warming to cease or even to go slightly negative. Unfortunately, even though PDO has been negative for nearly 15 years, a phase which during the 1940s to 1970s drove 0.35 C of transient atmospheric cooling against an overall larger warming trend, we have still seen atmospheric warming in the range of 0.1 C per decade.

This is bad news. For as ocean heat content is spiking, the transfer from atmosphere to ocean has not been enough to even briefly cut off atmospheric warming. And at some point, the oceans will deliver a portion of their latent heat back to the atmosphere, causing an even more rapid pace of temperature increase than was seen during the 1980s through 2000s period.

In other words, we’ve bent the cycle of natural variability to the point where we see warming, albeit slower warming, during times when we should have seen atmospheric cooling. And all indicators — radiative balance measured by satellite, deep ocean water temperatures, glacial melt, and atmosphere — show ongoing and inexorable warming.

Links:

NOAA’s Climate Prediction Center

University of Maine

NASA: ‘Haitus’ in Global Surface Temperatures Likely Temporary

NOAA Ocean Heat Content

 

 

The Keystone Pipeline, Arctic Methane Eruptions, and Why Human Fossil Fuel Burning Must Swiftly Halt

Human fossil fuel emissions heating the Earth’s airs, waters, and ice.

From historic droughts around the world and in places like California, Syria, Brazil and Iran to inexorably increasing glacial melt; from an expanding blight of fish killing and water poisoning algae blooms in lakes, rivers and oceans to a growing rash of global record rainfall events; and from record Arctic sea ice volume losses approaching 80 percent at the end of the summer of 2012 to a rapidly thawing permafrost zone explosively emitting an ever-increasing amount of methane and CO2, it’s already a disastrous train-wreck.

Since the 1880s, humans have emitted nearly 600 billion tons of carbon into the atmosphere. This vast emission has spiked atmospheric CO2 and CO2e (when all other heat trapping gasses are included) levels to above 400 parts per million and 481 parts per million respectively. According to climate sensitivity and paleoclimate science, these volumes are already enough to increase global temperatures by between 1.5 to 2 C this century and 3-4 C long term.

At the current carbon emissions rate of more than 10 billion tons each year and growing at around 2 percent, humans will have emitted a trillion tons of carbon by 2041. Under business as usual fossil fuel burning, more than 2.5 trillion tons of greenhouse gas trapping carbon will hit the atmosphere before the end of this century. It’s a terrible blow we will sorely want to avoid. And one we can only circumvent if we start working to radically curtail carbon emissions now.

Already, we can see instances of emissions-driven climate change and related harm. But what we see now is minor compared to what the future holds in store. We’ve warmed the Earth by more than 0.8 degrees Celsius since the 1880s, and if human emissions do not swiftly come to a halt, we could easily see warming of 4, 5, 7 C or more by the end of this century alone.

Probability of stabilizing below 2 C

(Probability of exceeding 2 C warming this Century [equilibrium climate sensitivity] given a certain level of human greenhouse gas forcing. Note that this study did not include feedbacks from Arctic carbon stores. Also note that current CO2 equivalent forcing without aerosols is around 481 CO2e and with the aerosol negative feedback is around 425 CO2e. Also note that equilibrium climate sensitivity is about half that implied by Earth Systems Sensitivity over the long term [many centuries]. For a final note, consider that the aerosol negative feedback is temporary. Image source: IPCC.)

What Does Warming Look Like If We Continue To Burn Fossil Fuels?

We talk about warming in terms of degrees Celsius and gigatons of carbon burned. But what does it all really mean?

Droughts rampaging through the lower to mid latitudes as the US, Southern Europe, India, the Middle East, Brazil, Australia, the Sahel and sections of China rapidly turn to desert. Stratified oceans turning into extinction engines for fish and marine life, fresh water poisoning due to toxic algae blooms, oceans emitting increasing volumes of poisonous hydrogen sulfide gas into the air. Fires the likes of which we have never seen in the far north as the permafrost burns and methane leaks and explodes from the thawing earth. Floods raging from an atmosphere whose moisture cycling has increased by 30 percent or more. Sea level rise rapid enough to swallow cities and coastlines over the course of decades. Devastating storms emerging from the regions closest to large glacial melt events bordering Greenland and West Antarctica. And all around, more and more people migrating, trying to find a place that is not being gobbled up by desert, incessantly burning, ravaged by storms, flooded, or poisoned by toxic air and water.

Very Large Algae Bloom Barents

(Very large bloom of micro-organisms north of Scandinavia in Arctic waters on August 14, 2014. Arctic waters are rich in nutrients. As they warm and as the sea ice retreats, larger areas are freed for invasion by major blooms of algae and other microbes. Large enough blooms can rob the ocean of oxygen, produce harmful toxins, result in large fish kills, and in the end create dangerous bottom conditions favoring microbial hydrogen sulfide production. Image source: LANCE-MODIS.)

That’s the dark future we inch closer to with every 0.1 C degree of further warming, with each additional megaton of fossil fuel and industrial carbon hitting the atmosphere.

And it is in this context that we must judge our actions and those of our leaders in reducing or in failing to reduce a nightmare that now grows in intensity with each passing year. A nightmare we create and continue to contribute to each time we light a fossil fuel driven fire.

Quibbling over Keystone Carbon Emissions When Tar Sands is the Real Issue

50 billion tons. That’s the amount of extractable, burnable carbon that likely sits beneath what were once the green forests of Alberta and are now little more than a sprawling waste of smoking pits covering tens of square miles. It’s more than 8 percent of the carbon we’ve already dumped into the atmosphere and it’s a volume of carbon we simply cannot afford to burn.

1.7 million barrels of crude oil per day now comes out of a place that Tolkien would likely describe as a mechanized orc warren. Keystone would boost that total to 2.2 million barrels per day, enrich the pit owners, and lay the groundwork for an ever-more-rapid exploitation of this dangerous pile of atmospheric heat-venom.

This week, a recent study out of Stockholm’s Environment Institute found that the pipeline itself would result in at least 4 times the carbon emissions currently estimated by the US State Department. This, well-duh, assessment, came as pit mining cheerleaders such as the American Petroleum Institute and Canadian Industry groups marshaled yet another effort to ram the pipeline through and boost global carbon emissions all in one go.

IDL TIFF file

(Athabasca’s sprawling tar sands operation as seen from space in 2009. The brown ribbon cutting through center frame is the Athabasca river. Image source: NASA’s Earth Observatory.)

In the end, all fossil fuels are terrible, adding to the global nightmare described above. But tar sands are between 12 and 20 percent more carbon intensive than even regular oil, especially when burning of the, worse than coal, coke bi-product is taken into account.

Arctic Methane Explosions — A Result of Human Warming

On the other side of the Arctic from the smoking fossil fuel pits of Alberta, nature is in the process of excavating a new, and no less terrifying, kind of pit. For from the Siberian tundra this summer were discovered three gaping wounds in the earth. Black holes shaped by impressive charges of methane blasting up from beneath the thawing permafrost.

All around the holes were ejected material. A kind of reverse meteor strike or methane volcano in which frozen methane trapped in clathrate beneath the thawing permafrost warmed enough to destabilize. The thawed methane built up in pressure pockets 250 feet or more below ground. Eventually, the pressure became too great and the permafrost overburden erupted, ejecting both earth and methane into the air above.

Eyewitnesses described eruption scenes where the Earth at first began to smoke. The smoke continued to bleed from the ground. Then, there was a loud flash and bang. When the smoke cleared, the methane eruption craters were plainly visible — a rim of sloped and ejected earth surrounding a black, gun-barrel like structure tunneling deep into the ground.

Scientists investigating the sites of these explosions found methane readings of 9.8% at the bottoms of the holes. These are high enough levels to burn if exposed to an ignition source — an atmospheric reading 50,000 times the current and already highly elevated ‘normal’ level.

Russia Siberia Crater

(One of three freakish craters caused by eruptions of methane from Siberia’s thawing tundra. Image source: Moscow Times.)

The Arctic permafrost alone contains about 1.5 trillion tons of carbon. And when it thaws, a portion of that carbon is bound to be released. It will be broken down by microbes and turned into methane in wet soil. In drier soil, it will form a peat like underburden that will slowly release CO2 by decay or, in more violent instances, by burning in one of the ever more powerful wildfires raging through the Arctic during the increasingly hot summers.

Beneath the icy permafrost layer are pockets of frozen methane in the form of clathrates. These structures are not included in the 1.5 trillion ton carbon estimate for permafrost. They are an addition of likely billions more tons of carbon. And, this year, we can now see a physical mechanism for their continued release — warming and thaw of the permafrost overburden.

The Human-Arctic Feedback Link: Why We Absolutely Must Stop Burning Fossil Fuels, And Swiftly

It is estimated that 1.5-2 degrees Celsius worth of global warming (5-8 C Arctic warming) is enough to thaw all the permafrost and eventually release a substantial portion of the carbon stored in and beneath it. For the Arctic warms much faster than the globe as a whole. In tundra regions, rates of warming over the past three decades have been 0.5 degrees Celsius per decade or more. In the region where the methane craters were discovered, recent temperatures at 5 degrees Celsius above average, during summer heatwaves in 2013 and 2014, have been reported.

As a result of past and current human greenhouse gas emissions, we have already locked in a substantial and significant rate of Arctic carbon emission feedback. And the speed of the Arctic carbon store release will likely determine how rapidly and whether other global carbon stores also respond.

A 2011 survey of 41 Arctic researchers found that rapidly reducing human greenhouse emissions would limit the volume of carbon feedback from the Arctic to 10% of the annual current human emission (or about 1 billion tons of carbon per year) by the end of the 21rst Century, but continue that emission for centuries to come (current Arctic carbon emissions are likely in the range of 30 million tons of methane and 100 million tons of CO2 each year). This is bad news. For we have already burned enough fossil fuel to keep warming on the trajectory to hit 1.5 to 2.5 C this century and 3-5 C or somewhat more long term — a bad result, and one that would likely require extensive human deployment of atmospheric carbon capture technologies. But it is far better than the alternative.

For continued fossil fuel burning would be enough to force a release of Arctic carbon stores equal to 35% or more of the human annual emission, or about 3.5 to 4 gigatons of carbon each year. By itself, this emission would easily represent a mini-runaway pushing the business as usual burning level of 800 ppm CO2 and 1,000 ppm CO2e by end century to 1,400 ppm CO2 + over the course of centuries and likely resulting in 4-7 C + warming this century and 12-14 C + worth of warming long term. A hothouse extinction event to rival or potentially exceed the worst seen in the geological record.

We simply must stop fossil fuel burning as it risks triggering ever greater carbon releases from stores around the globe and especially in the Arctic. In this way, stopping fossil fuel burning or failing to stop that burning is directly related to the ferocity and intensity of the Earth systems response we set off. And halting the Keystone Pipeline is a good approach to curtailing future carbon emission increases. A good start to a long, hard road ahead.

Links:

World Food Security in the Cross-hairs of Human-Caused Climate Change

Nature: Human Warming Pushing Entire Greenland Ice Sheet Into the Ocean

A Song of Flood and Fire

Toledo Algae Bloom Still Ongoing

2012’s Realization of the End of Arctic Sea Ice

The Arctic Methane Monster Exhales: Third Tundra Crater Found

A Faustian Bargain on the Short Road to Hell: Living in a World at 480 CO2e

How Much Will Tar Sands Oil Add to Global Warming?

IPCC 4th Assessment Report

LANCE-MODIS

Terrible Thunderstorms of Fire

How Global Warming Wrecks the Jet Stream, Amps up the Hydrological Cycle

Impact of the Keystone XL Pipeline on Global Markets and Climate Change

NASA’s Earth Observatory

Moscow Times

The Really Scarey Thing About Those Jaw-Dropping Siberian Craters

Methane Flammability

Methane and Frozen Ground

High Risk of Permafrost Thaw

 

 

Terrible Thunderstorms of Fire Over Canada as Arctic Territory Continues Record Burn

They call them pyrocumulonimbus. In layman’s terms — fire thunderstorms.

*   *   *   *   *

At the surface, a very large wildfire covering tens of square miles or more can produce quite a lot of heat. The smokey column cast off by the burning blaze rises, generating lift in the atmosphere even as it seeds the air with smoke — nuclei to which water droplets can adhere and from which clouds can form. The rising column contacts water vapor, pushing a vast head of it upward. As this heat-driven column hits the upper reaches of the troposphere, it cools, and the water vapor condenses to the readily available smoke aerosols.

This process produces what is called a pyrocumulus cloud or a fire cloud — a smoke and heat fed version of the normal and far less ominous puffy cumulus clouds we are so accustomed to seeing during summer afternoons. In the pyrocumulus, if the updraft is intense enough, if the fire beneath the cloud strong enough, it erupts into a pyrocumulonimbus — a fire thunderstorm rife with lightning and, if the firefighters are lucky, rain as well.

On August 5, 2014, NASA got an amazing shot of a pyrocumulonimbus cloud exploding over the massive and anomalous wildfires still raging in Arctic Canada. See that horrific boiling cloud stack above fire and smoke in the center-left of the image below? That’s a fire thunderstorm:

Pyrocumulonimbus

(Explosive pyrocumulonimbus cloud near Great Slave Lake on August 5 of 2014. Marked off red areas in the image indicate fire boundaries for individual fires. For reference, Buffalo Lake in the lower left corner is about 35 miles long from end to end. Image source: NASA.)

Dark Carbon Delivery Mechanism

NASA keeps a close watch on fire thunderstorms for a number of reasons. First, they are an indication of the heat updraft intensity rising off the fire beneath. And though they can result in beneficial rains, the storms are, many times, dried out by an over-abundance of smoke. As a result, a dry fire thunderstorm can add to fire hazard by casting off bolts of fire-setting lightning while begrudgingly holding back their moisture load.

Lastly, and perhaps most hauntingly, the fire thunderstorm is a delivery mechanism for black and brown carbon aerosols to the stratosphere, where they can do considerable damage. For if the updraft in the fire thunderstorm is powerful enough, water vapor droplets laden with heat intensifying dark carbon can break the troposphere boundary and enter the stratosphere. There, these dark aerosols trap heat and intensify global warming.

NASA studies have shown that dark aerosols in the stratosphere can have a global warming potential impact up to a million times that of a similar volume of CO2, so even a small amount lofted by fire thunderstorms could have a substantial effect. And the recent very, very intense fires in the Arctic region may well be providing an ominous and very widespread mechanism for just such a dangerous delivery.

Fire Thunderstorms Over Record Arctic Burn Zone

The region where this fire thunderstorm erupted on August 5 is experiencing what is likely the most intense Arctic burn Canada has ever seen. Since the start of this year, and as of August 6, about 2,850,000 hectares (11,000 square miles) have burned in the Arctic Northwest Territory (NWT) alone. This burn area so far for this one territory is almost twice that for the whole of Canada during an average year through early August. For the NWT, it represents an epic burning more than 15 times that of the 15 year average (which is usually 185,000 hectares by this time of year).

Expected Canadian Forest Fire Severity Increase

(Expected Canadian fire severity increase from 1980s through the end of the 21st Century. Findings based on climate model assessments. Image source: Skeptical Science.)

To say that such a major burn for an Arctic region normally resistant to wildfires is extraordinary may well be an understatement. The blazes this year cast off smoke that covered much of the North American Continent, crossed Greenland and has ridden weather systems around the globe. Many fires have burned non-stop for more than a month, burning the soil and thawed permafrost once the forest fuels are exhausted.

Climate models show an increased prevalence of Arctic wildfires as human warming continues to advance into the Arctic this Century. As of the mid 2000s and throughout this decade, we have seen very intense wildfires raging in Arctic Canada, Alaska, Scandinavia, and Siberia.

Siberian Wildfires August 6

(Massive wildfires still burning in Siberia on August 6, 2014. For reference, bottom edge of frame is about 300 miles. Image source: LANCE-MODIS.)

That these fires are an amplifier to human driven warming is probably a given. They dump extra CO2 and methane into the atmosphere, they burn both the more recent forest carbon store and the far older store in the soil, they break the permafrost cap, opening up new fuels for fires in subsequent years and providing avenues for methane and CO2 release, they dump dark carbon over low albedo surfaces such as ice sheets and sea ice, and they produce fire thunderstorms with the potential to inject dark carbon into the stratosphere.

While taking into account the entire Arctic system feedback to human caused climate change will likely be a monumental task, the mechanism of Arctic wildfires to tap and deliver the massive land-based Arctic carbon store to the atmosphere in various ways may be one of the critical elements in the overall feedback system. One that to any rational observer appears to be energetically emerging now. An expanding Arctic outburst of summer smoke and flame that is terrifying to watch.

Links:

NASA

LANCE-MODIS

NASA Captures Rare Pyrocumulus Image

Skeptical Science

Hawaii in a Sea of Storms: Abnormally Warm Pacific To Serve Up Unprecedented Double Cyclone Strike?

Hawaii in a Sea of Storms

(Iselle [center frame] and Julio [right frame] take aim on Hawaii [upper left] in most recent LANCE MODIS satellite shot.)

The Northern Pacific has been a very hot place this year. Above the Equator and stretching from Asia to the West Coast of North America, very few regions have witnessed below normal temperatures. And numerous very large hot zones continue to dominate off of Central and North America, between Alaska and Russia, and near Japan.

Overall, Pacific Ocean temperatures today are an excessive +0.93 degrees C above the, already hotter than normal, 1979 to 2000 average. And this extra heat, fueled by global warming, provides energy for the propagation of tropical cyclones well outside of their traditional ranges.

For Hawaii, this means falling under threat of two cyclone strikes within the period of as many days.

Hot Pacific Waters Projected to Spawn More Hawaiian Storms

Cyclone strikes in Hawaii are rare. The last time the island state was pummeled by a tropical storm was during the 1992 El Nino. But now it is threatened by not one, but two hurricanes. It is an event that is unprecedented in the entire satellite record. In other words, we’ve never seen this before.

Pacific SST Anomaly August 6

(Global sea surface temperature anomaly on August 6, 2014, shows an extreme +1.11 C positive temperature departure for the globe and a very strong +0.93 positive temperature departure for the North Pacific. Current science shows that warming ocean waters are extending the northward ranges of tropical cyclones, bringing regions like Hawaii under increasing threat. Image source: University of Maine.)

A shift in hurricanes toward Hawaii wasn’t entirely unexpected, however.

In 2013, Hiroyuki Murakami, from the International Pacific Research Center at the University of Hawaii at Mano together with a team of ocean and atmospheric researchers produced a report for Nature entitled Projected Increases in Cyclones Near Hawaii. The study modeled expected increases in Pacific Ocean surface temperature driven by human-caused climate change in the region near Hawaii. What it discovered was a marked increase in storm formation near Hawaii due to warming waters and related atmospheric changes.

The paper notes:

A key factor in projecting climate change is to derive robust signals of future changes in tropical cyclone activity across different model physical schemes and different future patterns in sea surface temperature. A suite of future warming experiments (2075–2099), using a state-of-the-art high-resolution global climate model1, 2, 3, robustly predicts an increase in tropical cyclone frequency of occurrence around the Hawaiian Islands.

Change in tropical cyclones

(Change in tropical cyclone frequency between now and 2075-2090 according to model projections produced in the Murakami Paper. Image source: Nature. See Also: Climate Change May Increase Number of Hawaiian Hurricanes)

What these researchers might not have expected was that a very warm Pacific during 2014 might well provide a prelude to what their models were predicting.

Iselle and Julio Barreling On In

For forecasts now show that Hawaii may well be in for a dose of double trouble — an extended period of stormy conditions starting early Friday and possibly not letting up until Monday as the unheard of storm pair barrels on in.

As of the most recent advisory, 85 mph hurricane Iselle was located about 650 miles to the east and southeast of Hilo. Iselle’s present and projected motion toward the west and northwest at around 15 miles per hour is expected to bring the storm, at a strong tropical storm intensity, over Hawaii’s Big Island by Friday. The storm is then projected to pass near the eastern islands before tracking back out into the open Pacific.

Coming directly behind Iselle, Julio is located about 1600 miles east-southeast of Hilo and packs maximum sustained winds of 75 miles per hour. The storm is also expected to weaken to strong to moderate tropical storm status before passing over or near the Hawaiian Island Chain along a track just to the north of Iselle’s path. This would bring the storm near the islands on Sunday, just two days after Iselle.

Threat Cones

(Threat cones for Iselle, Julio and Genevieve, all developing in an unusual region near the Central Pacific. Image source: NOAA.)

It’s worth mentioning that a third storm, Genevieve, has also developed in the mid-Pacific within about 1,000 miles of the Hawaiian chain — also in a rather rare region for tropical cyclone formation. Genevieve, however, is not expected to threaten the islands as it tracks westward, taking a long journey toward Asia.

Conditions in Context

These three cyclones generated over warm waters near the central equatorial Pacific. The storms emerged from a convective pattern in a region that typically only shows robust storm development during El Nino.

Though El Nino is not officially ongoing, atmospheric conditions over the past few weeks have become more favorable even as a new warm Kelvin Wave appears to be forming in the waters of the Western Pacific. NOAA still forecasts a weak to moderate El Nino for 2014, but conditions, though somewhat more favorable, remain murky.

Sea surface temperatures in the region of Hawaii

(Current sea surface temperatures in the region of Hawaii are a in rather warm and mostly above average range from 26 to 28 C [80 to 83 F], more than enough to sustain powerful tropical cyclones. Generally, water temperatures above 75 F are needed for tropical cyclone formation and strengthening. The primary limiters to both Eselle’s and Julio’s strength remains wind shear, which is expected to reduce both storms to tropical storm status over the coming days. Even so, Hawaii is in for an ongoing period of unprecedented weather. Image source: National Hurricane Center.)

It’s worth noting that a rash of storms in this region is unprecedented in the satellite era and is especially odd considering that ENSO remains neutral. It is very likely that the outbreak is in some way related to the larger Pacific Ocean warming trend associated with human-caused climate change acting together with an El Nino-like development trend.

UPDATE: Due to warm surface waters in the region of Hawaii and somewhat more favorable than expected atmospheric conditions, Iselle is expected to make landfall on the big island of Hawai’i near Hawaii City later today. Expected maximum sustained winds at the time of landfall are near 75 miles per hour.

Hurricane tracking from NOAA brings the storm directly over the Big Island at around midnight after which the storm is predicted to skirt Maui and Oahu:

NOAA Hurricane Track Iselle

(NOAA’s most recent projected storm track for Iselle. Image source: National Hurricane Center.)

Links:

Double Trouble: Hawaii Braces For Hurricanes Iselle and Julio

Climate Change May Increase Number of Hawaii Hurricanes

Projected Increases in Cyclones Near Hawai

NOAA

University of Maine

LANCE MODIS

National Hurricane Center

Hat tip to Eleggua

 

Sala Burning: Worst Fire in 40 Years Rages in Sweltering Sweden

Worst Fire On Record Raging in Heat Sweltered Sweden

(Sala Fire on August 5, 2014 as seen in this LANCE-MODIS satellite shot. For reference the fire front in this shot is about ten miles wide, the smoke plume, two hundred miles long. Image source: LANCE-MODIS.)

It’s been scorching hot in Sweden this summer.

Throughout June, July and into August, the Arctic country has seen day after day of record heat. Thermometers hitting the upper 70s, 80s, and even 90s have become a common event in a land famous for its cooling mists, Arctic lights, and frozen fjords.

By Wednesday of last week, the heat had reached a tipping point. Fire erupted across a ridge line just to the northwest of Sala, Sweden and about 120 kilometers north of Stockholm. The fire rapidly intensified, expanding as nearby towns fell under its shadow.

By Sunday, the blaze spread to encroach upon homes as an all-time high of 33 C (91 F) was recorded in Visby, Gotland even as tumultuous and oddly dry storm clouds brought with them more than 47,000 thousand lightning strikes, shattering Sweden’s all-time one-day lightning record and igniting numerous smaller fires throughout the nation.

On Monday, the situation reached a new extreme as numerous communities were threatened with black smoke billowing into streets and neighborhoods.

By today, more than 1,000 people were evacuated and one soul lost as the blaze expanded to cover a region encompassing 15,000 hectares — about equal to 21,000 football fields or 57 square miles. It is now the largest fire in at least 40 years to affect Sweden.

“I feel deeply concerned for the people who have been asked to leave their homes. I also understand that it is a very tough situation for all those struggling to fight the fire.” — King Carl Gustaf, on Tuesday, August 5

Forecast high temperatures Sweden

(Forecast high temperatures for Europe on Tuesday, August 5 show readings above 26 C [80] F extending well past the Arctic Circle in Sweden. Image source: WeatherOnline.)

Reports from the scene are of chaos with eyewitnesses comparing the event to a war zone. In Norberg, fires threatened to enter city neighborhoods as residents were obliged to stop seeking help from over 100 volunteers to defend their homes due to risk of loss of life. The decision to halt volunteer efforts came after 9 of the workers were trapped by encroaching flames.

The fires are extraordinarily energetic and appear to have engaged the basement layer. As with other recent Arctic fires in permafrost or near permafrost zones, areas well below the surface soil zone are involved, resulting in risk of a very intense, long time-scale event:

“It’s burning deep down into the ground and across large surfaces,” fireman chief Per Hultman said in an interview with Expressen. “It’s going to take months to extinguish.”

Norberg had not yet issued evacuation orders but officials there were advising the town’s 4,500 residents to pack their bags and be ready to leave at a moment’s notice.

Sala Fire Races Across a local hillside on Monday

(Sala Fire races across a local hillside on Sunday, August 3rd. Image source: Here.)

A large scale response to the blaze includes a small army of fire fighters from three Swedish regions, the Swedish military and aid from the European Union nations France and Italy.

By Tuesday afternoon local time, the situation remained extremely dangerous with the blaze still raging out of control even as clouds and light rain moved in, providing firefighters with some hope that the fire might lose some of its extreme intensity. However, current reports still indicate that the situation at the site of Sweden’s worst fire in 40 years remained very tenuous with concerns that a shift in the wind to the north might sweep the fire on into Norberg.

Conditions in Context: Human Warming Means More Arctic Fires

Under an ongoing and repressive regime of human-caused climate change fires like the Sala blaze are expected to proliferate and intensify as time moves forward. A combined set of conditions including a permafrost thaw line moving rapidly northward, increasing record heat, temperatures that are rising at a rate twice that of the global average, and deadwood multiplying invasive species are just a few of the ways climate change enhances fire risk. The thawing basement permafrost is particularly vulnerable to fire once it thaws and dries. It creates a peat-like pile, in most places scores of feet deep, that can burn for extended periods and re-ignite long extinguished surface fires. Near or north of the Arctic Circle, there are almost no land zones not under-girded by a thick permafrost layer. It represents a very large pile of potential fuel for fires as it thaws.

So, unfortunately for Sweden and for other Arctic nations, the fire situation is bound to worsen as warming continues to progress.

Links:

LANCE-MODIS

WeatherOnline

Emergency Crews Ready for Fire to Spread

One Dead, Hundreds Evacuated as Swedish Forest Fire Rages

One Dead as Swedish Fire Rages on

New Heat Record Sizzles and Strikes Sweden

Hat tip to Colorado Bob

Hat tip to John Lonningdal

 

 

 

Large Algae Bloom Still Ongoing As Toledo Officials Declare Water Safe to Drink

 

Algae bloom Lake Eerie

(Large algae bloom still visible in Lake Erie satellite shot on August 4, 2014. Image source: LANCE-MODIS.)

Warming, more toxic waters. It’s a problem directly driven by human-caused climate change. And for Toledo, Ohio, this weekend, it’s a reality that was starkly driven home as water services to half a million residents were suddenly shut off. There, in the waters of Lake Erie, a massive bloom of freshwater cyanobacteria pumped out enough poison to put human health at risk and force Ohio officials to declare a state of emergency.

Emerging Threat to Public Health

In Northern Ohio, water safety officials have been nervously testing Lake Erie supplies for many years now. Microbial blooms in western Lake Eerie were on the rise and the worry was that the new blooms may pose a future health threat as both climate change and agricultural run-off intensified.

By 2011, the wettest summer on record and warm waters in Lake Erie helped trigger a major outbreak of cyanobacteria blooms which ultimately resulted in more than 10 billion dollars in damage due to fouled waters, toxic beaches, and losses to the fishing and tourism industries of Lake Erie’s bordering states. Last year, a massive bloom caused some small northern Ohio towns to temporarily cut off water supplies. By last weekend, the entire water supply of Toledo, Ohio was under threat from the microbe-produced toxin called microcystin.

Water Poisoning by Microbes

Microcystin is a potent toxin produced by the small-celled, fresh water cyanobacteria. The substance is unsafe at levels greater than 1 part per billion in drinking water (according to the World Health Organization). Consumption of the toxin results in headaches, nausea and vomiting. Microcystin is directly toxic to the liver with exposure resulting in severe damage. It also results in damage to the digestive system and low levels of exposure have been linked in studies to various forms of abdominal cancer.

Since the toxin is a chemical that has already been produced by bacteria, usual sanitation methods, such as boiling water, are ineffective and may even help to concentrate the poison, making it more potent. So the toxin must be prevented from entering the water supply at the source — which can be difficult if much of the water source is contaminated, as is the case with Lake Erie.

A Threat Driven By Climate Change and Human Activity

As waters warm, they host larger and larger blooms of cyanobacteria harmful to animal life, including humans. The microbes thrive in warm, nutrient-rich water. And under climate change waters both warm even as runoff in certain regions increases due to more frequent bursts of heavy rainfall. This has especially been the case for the central and north central sections of the US, this year, which have suffered extensive and frequent downpours together with record hourly and daily rainfall totals in many areas.

The deluges flush nutrients down streams and into major bodies of water. The water, warmed by human-caused climate change, are already a haven for the cyanobacteria. So the blooms come to dominate surface waters. In addition, the runoff contains added nutrients due to large amounts of phosphorus and other agriculture-based fertilizers. It’s a combination that really gives these dangerous microbes a boost. Under such conditions, the massive resulting blooms can turn the surface lake water into green sludge.

Dead Zones, Anoxic Waters

Lake Erie algal blooms, August 2011

(Green cyanobacteria in Lake Erie during the large algae bloom of 2013. Image source: University of Michigan.)

Eventually, the cyanobacteria leech the surface waters of nutrients and begin to die out. As they do, they undergo decay which strips oxygen from the waters. Through this process, dangerous, anoxic dead zones radiate from areas previously dominated by large cyanobacteria blooms. The dead zone and toxin producing bacteria often result in large-scale fish kills and the wide-scale fouling of waters that can be so damaging to various industries. However, the dead zones themselves are havens for other toxic microbes — the hydrogen sulfide producing kind.

Water is Declared Safe — Information Still Unavailable to the Public

Today, water safety officials lifted the ban on water use for Toledo, claiming that water was now safe to use and drink after the water system was properly flushed. Officials apparently conducted six tests to confirm water supply safety but have not yet made results public. Personnel with the EPA unofficially stated that microcystin levels were at 3 parts per billion on the day the water was declared unsafe but that water was now safe for residents.

The declaration was met with widespread criticism due to the fact that data on water testing was not made publicly available, reducing confidence in the safety officials’ assertions and causing many residents to question their veracity. State and city water officials say they plan to post the data on their website, but have yet to confirm a time.

Meanwhile, the large cyanobacteria bloom is still ongoing. Experts expect the bloom to peak sometime in mid September and then begin to recede with the advent of fall and cooler weather. With more than a month and a half still to go, Lake Erie water troubles may just be starting to ramp up.

Links:

Toledo Water Ban Lifted, Results Kept Secret

Don’t Drink the Water

LANCE-MODIS

University of Michigan

Spring Rain, Foul Algae in Ailing Lake Eerie

Toxins in Water Lead to State of Emergency

 

Arctic Emergency: Top Scientists Explain How Arctic Warming is Wrecking Our Weather and Pushing World To Rapidly Cross Climate Tipping Points

(Must-watch video that includes direct observation and analysis of Arctic tipping points provided by a number of the world’s top climate scientists.)

You don’t want to mess with Arctic warming. It’s an engine of destruction straining to be set loose. A mad burning beast of a thing. One whose fires we are now in the process of stoking to dangerous extremes.

Don’t believe me? Then just listen to top scientists like Dr. Jennifer Francis, Dr. Jason Box, Dr. Jeff Masters, Dr. Natalia Shakhova, Dr. Igor Semiletov, Dr. Peter Wadhams, Dr. James Hansen, Dr. Steve Vavrus, Dr. Ron Prinn, Dr. Kevin Schaefer, Dr. Nikita Zimov, Dr. Jorien Vonk, and a growing list of many, many more (also see above video).

An Arctic that Appears on the Verge of Large Carbon Emissions Adding to an Already Dangerous Human Warming

At issue is the fact that the Arctic is very sensitive to global heat forcing. And any small warming there can rapidly trigger a number of feedbacks that generate more warming for the Arctic and the globe. These feedbacks include but are not limited to:

Snow and sea ice melt resulting in darker surfaces absorbing more sunlight during summer times, a warming global ocean system transporting a high percentage of the added heat north and southward along the ocean bottom and at the surface, rising temperatures in the Arctic slowing and increasing the waviness of the Jet Stream which generates more south to north transfer of temperate and tropical warmth into the Arctic together with a greater export of Arctic cold to the lower latitudes, added greenhouse gasses resulting in much warmer Arctic winters during the times of darkness when greenhouse gas trapping of long wave radiation is most efficient, and an increasing release of carbon from stores sequestered in the Arctic for millions of years, adding to the overall greenhouse gas burden in this, very sensitive, region.

Many of these feedbacks and resulting weather alterations are now in play.

We have observed sea ice reductions of up to 80 percent in total volume losses together with major snow cover reductions since the 1970s. We have observed substantial and growing releases of methane from the Arctic environment in the form of emissions in the region of the submerged permafrost on the East Siberian Arctic Shelf. We have witnessed strange methane emissions emerging in the smoke of major wildfires that have spread over large regions of the Arctic during summer. We’ve seen very troubling emissions in the form of methane eruptions coming from the permafrost and possibly reaching as deep as the methane clathrate layer beneath the permafrost. We’ve seen increasing methane releases from permafrost melt lakes. And we’ve seen increasing CO2 emissions from the dry decay of permafrost and from the direct burning of permafrost and boreal forests by Arctic wildfires.

Trio of Siberian Wildfires August 3, 2014

(Trio of massive Siberian Wildfires raging on August 3, 2014. Burn scar size ranges from 90 to 350+ square miles. Image source: LANCE-MODIS.)

In total, according to scientists in the above video, under an unmitigated and continuously rising heat forcing from human greenhouse gas emissions, the Arctic could release 120 gigatons of carbon or more by the end of this century. Given that humans now dump 13 gigatons of carbon into the atmosphere each year, the Arctic emission would be like adding another decade of current human emissions on top of an already rapidly warming system. Even worse, a significant portion of the Arctic  carbon emission could appear in the form of methane — a gas that traps heat far more rapidly than CO2, equaling a heat forcing that is about 60 times CO2 by volume.

A Call From Scientists For Rapid Mitigation

It is important to note that, though strange and terrifying as they may be, current Arctic feedbacks and related carbon emissions are minor when compared to the changes we will unlock if we continue to release greenhouse gasses into the atmosphere. Under BAU, it is possible that we will set in place a regime of Arctic carbon emissions that is equal to 30% or more of the current human greenhouse gas emission. This sizeable release would likely then last for centuries until much of the Arctic carbon store of 1,500+ gigatons locked in permafrost and untold other gigatons locked in clathrates were exhausted. Such releases would result in a mini-runaway that could lock in dangerous hothouse climate conditions for millions of years to come.

Due to the extreme nature of the current situation, some damage is now unavoidable, as we probably hit at least 2-3 C warming long term even if human greenhouse gas emissions suddenly halt. But major damage can still be prevented through direct and coordinated action on the part of nations.  For this reason, climate scientists are calling for an 80% or greater reduction in near term human greenhouse gas emissions. A strong direct urging from some of the best scientists in the world and one that we should take very seriously as it is becoming increasingly obvious that the Arctic is now in the process of crossing a number of extremely dangerous tipping points.

I implore you to watch the above video and to do everything in your power to support policies that rapidly draw down the human greenhouse gas emission. Our timeframe window for effective response is rapidly closing and we need swift, direct action now.

Links:

Arctic Emergency — Scientists Speak

The Arctic Methane Monster Exhales

LANCE-MODIS

 

 

 

 

Permafrost Fires Advancing Toward Arctic Ocean Shores

Smoke from Siberian Tundra Fires August 1, 2014

(Smoke from Siberian permafrost fires entrained in wind pattern blowing over the East Siberian and Laptev seas. What can best be described as a synoptic pattern of smoke stretching for more than 2000 miles. For reference, we are looking at the heart of Siberia, the bottom edge of frame touches the Arctic Ocean. Total width of frame is more than 2000 miles. Image source: LANCE-MODIS.)

From the Northwest Territory of Canada to a broad central section of Russian Siberia called Yedoma, the permafrost fires this year have been vicious, powerful and colossal. They have burned deep into the basement soil and permafrost layer, casting out billows of dense, smokey material that, at times, has blanketed a majority of both Siberia and the North American Continent.

In Minnesota, two thousand miles away from the still raging Northwest Territory fires, James Cole, who comments here frequently, noted:

Forest fire smoke here in N.E. Minnesota was off the charts yesterday! I went out to watch the blazing red sun sink below the green hills. This almost invisible red ball brought back an old memory from watching a sun set in San Diego County during a very bad fire out break back when I was home ported with my ship there. These Alberta fires are a huge distance from here, but I can guess at their size by the thick gray haze, the smell and a sunset just like one in an active fire zone. (In confirmation to this eye-witness report, the Minnesota Star Tribune’s Meteorologist Paul Douglas reports Heat, Smoke, and Thunder)

Smoke Plume GOES

(GOES satellite shot of smoke plume from Arctic fires crossing Minnesota late yesterday evening. Image source: GOES.)

You can see the vast plume of filtering across Minnesota in the above GOES satellite shot.

Fires that Burn Soil

These fires aren’t anything normal. They burn the land as well as the trees. They cast off an inordinately high volume of smoke, such that they are far more visible in the satellite shot than more southerly fires of similar size. And they continue to burn for weeks and weeks — with lands that were lit nearly a month ago still casting off smoke and fire from the same locations.

The quantity of material necessary to keep such fires burning from the same location day in, day out, must be immense and it is becoming increasingly obvious to this observer that woodland as well as the soil and, likely, the thawing permafrost itself have become involved. It is a basement layer that, when fully thawed can be scores of feet deep. A set of peat-like material that, were it to be sequestered, would likely turn into a hundreds foot deep seam of coal over ages of heat and pressure. Instead, it is now being liberated as fuel for fires by human-caused warming.

Wildfire burning near Laptev Sea August 1, 2014

(Wildfire burning near Laptev Sea on August 1, 2014. The terrain in this region is tundra and tundra lakes, similar to the Yamal region where methane outburst sites where recently discovered. Wildfire is the comet like feature in upper center frame. The shoreline of the Laptev is visible along the lower frame border. Note the steely gray pallor of smoke running south to north [top to bottom] through the image frame. For reference, bottom edge of frame is about 150 miles, fire front is approximately three miles. Image source: LANCE-MODIS.)

On the Canadian side, the fires have primarily remained in the same region, simply continuing to burn from mostly the same sources or spreading only to local areas. But on the Russian side, the fires have leapt from their original cauldrons to ignite in massive blazes along regions both east and west, north and south.

Over recent days, fires have been creeping northward along a ridge line toward the Laptev Sea. Yesterday, a large fire ignited in the treeless tundra just 70 miles south of Arctic Ocean waters. You can see a close up image of this fire in the MODIS shot above.

So we have hard tundra burning just 70 miles south of the Arctic Ocean. No trees here, just an endless expanse of thawing ground.

Links:

LANCE-MODIS

Heat, Smoke, and Thunder

Hat tip to Colorado Bob (First Observation)

Hat tip to James Cole

 

 

 

Smokey Greenland Sees Another Summer of Substantial Melt

Smoke From Canadian Wildfires Near Greenland

(Smoke from Record Northwest Territory Wildfires on August 1, 2014 crossing Baffin Bay and the West Coast of Greenland. Image source: LANCE-MODIS.)

According to our best understanding of paleoclimate, at current greenhouse gas levels of 402 parts per million CO2 and 481 parts per million CO2e, the Greenland Ice Sheet eventually melts out entirely. It’s a level of atmospheric heat forcing we’ve already set in place, a level that keeps rising at a rate of about 2.2 parts per million CO2 and 3 parts per million CO2e each and every year due to our ongoing and reckless carbon emissions. And it’s a level that is already starting to receive substantial additions from destabilizing permafrost carbon together with likely increasing releases from sea bed methane stores.

In this, rather stark, geological, climatological and physical context, we ask the question — is it possible for us to stop a wholesale collapse of Greenland’s ice? And we wonder, how long can the ice sheet last as human greenhouse gas forcings together with ongoing releases from some of Earth’s largest carbon stores continue to rise?

Greenland Jacobshavn July 30 2014

(Extensive melt ponds, Dark Snow on West Face of Greenland Ice Sheet near the Jakobshavn Glacier on July 30, 2014. Extensive darkening of the ice sheet surface, especially near the ice sheet edge, is resulting in more solar energy being absorbed by the ice sheet. Recent studies have shown that edge melt results in rapid destabilization and speeds glacier flows due to the fact that edge ice traditionally acts like a wall holding the more central and denser ice pack back. Notably, the Jakobshavn is currently Greenland’s fastest glacier. Image source: LANCE-MODIS.)

For ultimately, our ability or inability to rapidly mitigate and then draw down extreme levels of atmospheric greenhouse gasses will provide an answer these key questions. And whether we realize it or not, we are already in a race against a growing Earth Systems response that may eventually overwhelm our efforts, if we continue to delay for too long.

But there’s a lot of inertia in the ice. It represents aeons and aeons of ancient cold locked in great, mountain-high blocks. And its eventual release, which is likely to continue to ramp higher and higher this century, is bound to result in a temporary and weather-wrecking outrush of that cold causing dramatic swings in temperature and climate states to be the rule of the day for Greenland as time moves forward.

Melt Ponds Zachariae Glacier July 25, 2014

(Large melt ponds, extensive surface water over Zachariae Glacier in Northeast Greenland on July 25 of 2014. For reference, the larger melt ponds in this image range from 1 to 4 kilometers at their widest points. The Zachariae Glacier sits atop a deep, below sea level channel that runs all the way to a massive below sea level basin at the center of the Greenland Ice Sheet. This Glacier is now one of more than 13 massive ice blocks that are moving at ever increasing velocity toward the ocean. Image source: LANCE-MODIS)

So we should not expect any melt to follow a neat or smooth trend, but to instead include large variations along an incline toward greater losses. In short, we’ve likely locked in centuries of great instability and variability during which the great ice sheets are softened up and eventually wither away.

Another Year of Strong Greenland Melt

In the context of the past two decades, the 2014 summer melt has trended well above the 30 year average in both melt extent and surface mass losses. Though somewhat behind melt during 2012, 2014 may rank in the top 10 melt years with continued strong melt in various regions and an overall substantial loss of ice mass.

Surface melt extent appears to be overall above 2013 values, ranging well above the 1981-2010 average, but significantly below extents seen during the record 2012 melt:

Greenland Melt Summer 2014Greenland melt 2013

Greenland Melt 2012

(Last three years of surface melt extent with the most current melt graph for the 2014 melt season at the top and the preceeding years 2013 and 2012 following chronologically. Dotted blue line indicates 1981-2010 average. Top three surface melt years in the record are 2012, 2010 and 2007, respectively. Image source: NSIDC.)

Overall, 2014 showed four melt spikes above 35% melt coverage with three spikes nearing the 40% melt extent coverage mark. By contrast, 2013 only showed two such melt spikes, though the later spike was slightly more intense than those seen during 2014. 2012’s 150 year melt, on the other hand, showed melt extents ranging above 40 percent from mid June to early August with two spikes above 60% and one spike above 80%.

Losses of mass at the surface also showed above average melt trends, but with net melt still below both 2013 and 2012:

Greenland Surface Mass Balance 2014

(Greenland surface mass balance trend for 2014 [blue line] compared to mean for 1990 to 2011 [gray line] and record melt year of 2012 [red line]. Image source: DMI.)

2012 was a strong record year and, on average, we’d expect to see the record jump back to lower levels after such a severe event. However, there’s little to indicate that either 2013 or 2014 have bucked the trend of ongoing and increasing surface melt over Greenland. To the contrary, that trend is now well established with yearly surface mass losses now taking place during all but one of the last 13 years. And there is every indication that 2014 will be a continuation of this trend.

Basal, Interior Melt Not Taken Into Account in the Surface Measure

While surface measures are a good measure of melt on the top of the ice sheet, it doesn’t give much of an idea of what’s happening below the first few feet. There, during recent years, sub surface melt lakes have been forming even as warming ocean waters have eaten away at the ice sheet’s base. And since more than 90% of human-caused warming ends up in the world’s oceans even as many of Greenland’s glaciers plunge hundreds of feet into these warming waters, one might expect an additional significant melt to be coming from the ocean-contacting ice faces.

We can see an indication of the severe combined impact of basal, interior and surface melt in the GRACE mass measurements of the Greenland Ice Sheet since 2002. A record that finds a precipitous and increasing rate of decline:

Greenland Cumulative Mass Loss Through Late 2013

(Greenland cumulative mass loss through mid 2013. Data provided by the GRACE satellite gravity sensor. Image source: NOAA.)

It is this ongoing overall mass loss that tells the ice sheet’s full tale. One that now includes an ever-increasing number of destabilized glaciers speeding more and more rapidly seaward.

Links:

LANCE-MODIS

NSIDC

DMI

NOAA

Nature: Human Warming Now Pushing Entire Greenland Ice Sheet Into the Ocean

Dark Snow

The Arctic Methane Monster Exhales

Large Methane Plumes Discovered on Laptev Continental Slope Boundary

 

 

 

Exceptional Drought Blankets 58 Percent of California; Reservoirs Missing One Year’s Worth of Water

For California, the punishment just won’t stop.

Human warming and a climate change induced blocking pattern have withered California under record drought conditions for the better part of three years now. A vicious trend that worsened again in recent days with yet another jump in drought severity as exceptional drought conditions surged to cover a majority of the state.

Previous week’s values of 36 percent exceptional drought coverage rocketed to 58 percent in just one week. Exceptional drought is the highest drought category for the US Drought Monitor, representing the most extreme conditions in the measure. So most of the state is now sweltering under the nation’s worst drought category with the remainder covered by extreme and severe drought:

California Drought July 29

(US Drought Monitor map of California showing 58 percent of the state covered in exceptional drought [brick red], 23 percent covered in extreme drought [red], and the rest covered in severe drought [orange]. California is now entering its fourth month of 100% drought coverage after more than three years of abnormally dry conditions.)

One hundred percent drought coverage with worsening conditions has been the prevailing pattern ever since May when drought first surged to blanket the entire state. Since that time, conditions have been steadily worsening with agricultural regions drying out, farmers, communities and industries forced to further deplete limited ground water supplies, and with reservoirs dropping despite best efforts by federal and state officials to conserve.

As a result, state supplies are being hammered. For, according to a report released today by the National Drought Mitigation Center, the state is “short more than one year’s worth of reservoir water, or 11.6 million acre-feet, for this time of year.” In other words, if a year’s worth of rain fell over the state tomorrow, it would barely be enough to bring reservoir levels back to normal.

So far, drought effects have been mitigated, mostly through the above-mentioned reliance on ground water supplies. But it remains questionable how long such activities can continue. And despite even these efforts thousands of agricultural workers have been laid off amidst a 2 billion dollar loss for the state’s food industry.

As ground water and reservoir levels continue to drop, officials have grown more anxious to enforce conservation measures. To this point, fines in excess of 500 dollars have been levied for residents hosing sidewalks and driveways, for excessively watering their lawns, or for other water intensive practices. To this end, many municipalities have hired ‘water police’ to patrol neighborhoods and enforce water conservation measures.

Climate Change and A Mangled Jet Stream

Recent scientific studies have made a strong link between the historic California drought and ongoing changes to Earth’s climate resulting from human greenhouse gas emissions. Many of these changes involve heat-driven alterations to Earth’s atmospheric circulation. For as the Earth warms, it does so unevenly. In regions near the pole, and especially above 60 North, temperatures have risen by, on average, about 0.5 degrees Celsius per decade since the 1980s. This heating has pulled the Jet Stream along with prevailing weather patterns northward.

Sierra Nevada No Snow July 25

(A Sierra Nevada mountain range featuring glaciers turned brown and sweltering under temperatures as high as 70 degrees on July 25, 2014. For 2013 to 2014, the Sierra Nevadas have been mostly devoid of the reservoir-restoring snows that California typically relies upon. Image source: LANCE-MODIS.)

This more rapid heating of the far north has also resulted in a reduction of the north-south temperature differential. In the past, a high difference in temperature from north to south helped drive a prevailing wind pattern called the Jet Stream which kept weather systems moving across the Northern Hemisphere. But as the difference between north and south temperatures dropped, weather systems tended to stall. High amplitude waves tended to form in the Jet Stream and blocking patterns tended to emerge more often.

For California, the upshot has been the increasing prevalence of a ridge and blocking high pressure system deflecting storms away from the California coast. The pattern, which began to take hold three years ago, has been an almost constant feature for the past 16 months. And the result has been one of the worst droughts California has ever seen.

In May, a new scientific study linked the anomalous blocking pattern, the California Drought and human caused climate change stating:

The 2013–2014 California drought was initiated by an anomalous high-amplitude ridge system. The anomalous ridge was investigated using reanalysis data and the Community Earth System Model (CESM). It was found that the ridge emerged from continual sources of Rossby wave energy in the western North Pacific starting in late summer and subsequently intensified into winter. The ridge generated a surge of wave energy downwind and deepened further the trough over the northeast U.S., forming a dipole. The dipole and associated circulation pattern is not linked directly with either El Niño–Southern Oscillation (ENSO) or Pacific Decadal Oscillation; instead, it is correlated with a type of ENSO precursor. The connection between the dipole and ENSO precursor has become stronger since the 1970s, and this is attributed to increased greenhouse gas loading as simulated by the CESM. (emphasis added)

This climate change induced blocking pattern has also been associated with numerous warm air invasions of the Northern Hemisphere polar region, the most recent of which occurred yesterday.

Models Show Worsening Drought Conditions Under Human-Caused Climate Change

Unfortunately for California, the US Southwest, and for a growing portion of the country, the most recent drought may be just one in a string of many increasingly worsening events to come. Climate models predict a wholesale drying out of the US Southwest and Central US under an intensifying regime that has already begun to take hold. By mid-century conditions are expected to be quite extreme indeed:

Advance of drought

(NCAR model study of global precipitation under moderate warming throughout the 21st Century. The scale is based on the Palmer Drought Severity index with values of -4 and lower at exceptional drought. Under this model run, most of the US is blanketed by exceptional drought conditions. Overall, drought is expected to originate in the south and central US and then expand north and eastward as human caused warming intensifies.)

For Californians suffering under a three year long drought, such long-range forecasts indicate that the worst may be yet to come. For the short-to-middle-term, the west coast blocking pattern remains in place and shows little sign of movement. For the long-term, unless human greenhouse gas emissions are rapidly reduced, droughts of this intensity grow more and more likely.

But Californians are not alone, as model predictions show most of the US coming under an increasing regime of drought as human-caused warming intensifies throughout the 21st Century. Drought emerging now in the US Southwest is expected to expand north and eastward, eventually taking root and reaching an extreme intensity in the Central US. The front of drought then rides into the US Southeast and Mid-Atlantic as, by mid-to-late century, it surges northward into Canada.

The lesson to take from this is that few in the US are spared a fate of worsening drought spurred by human-caused climate change. And with climate change clearly linked to the California drought, we may be getting a bit of the bitter taste of what’s still to come.

UPDATE: US Drought Monitor now reports that the California Drought is now the worst in state history and that soil moisture levels are nearing zero for much of the state.

Links:

California Drought Crisis Reaches Worst Level As it Spreads North

US Drought Monitor

National Drought Mitigation Center

Probable Causes of the Abnormal Ridge Accompanying the 2013-2014 California Drought

LANCE-MODIS

NCAR

Jet Stream So Weak Winds are Running From Pacific to Atlantic Across the North Pole

 

 

 

Jet Stream So Weak Winds Are Running From Pacific to Atlantic Across the North Pole

image

(Winds flowing north from just west of Hawaii, through the Bering Strait, over the North Pole and on into the North Atlantic as seen by NOAA’s GFS model and imaged by Earth Nullschool.)

This is a very odd pattern for global surface winds.

In the central Pacific, along a band above 20 North Latitude and about 500 miles west of Hawaii, a broad stream of easterly winds yesterday took a turn toward the north. The wind field was then pulled into a long frontal boundary spinning out from a large low pressure system off Irkutsk, Russian and driven on toward the Western Aleutian Island Chain.

The winds continued their sprint northward through the Bering Strait before being again captured by a low, this time over the East Siberian Sea. Sped on by this second nudge, the winds, running at 15-25 mph, spilled over the North Pole and into a third low spinning just north of Svalbard. This system shoved the winds southward over the North Atlantic and finally into a cyclone just north of England where the winds finally turned eastward, returning to the prevailing west-east global flow.

This is an epic journey in defiance of typical and prevailing weather patterns spanning thousands of miles and three oceans. It is decidedly not normal.

A Ruptured Jet Stream and A Flood of Winds Across the Pole

Typically, cold air over the polar region will insulate the Arctic from these kinds of circumpolar flows. The cold air to the north, warm air to the south, drives winds faster around the pole, creating a kind of wind wall that keeps south-north flows out of the Arctic. It is a pattern that tends to isolate Arctic air from the rest of the global air circulation to the south.

Jet Stream 30 July 2014

(Mostly disassociated Jet Stream with large rupture running north through the Bering Strait and on over the polar zone. Image source: University of Maine.)

But, during recent years, temperatures in the far north have been rapidly rising by in some cases as much as 0.5 to 1.0 degrees Celsius per decade. This heating of the polar zone, together with land and sea ice loss, has resulted in a weakening of the circumpolar wind pattern called the Jet Stream. This weakening has collapsed the wall keeping southerly winds from rushing over the Arctic as we see today.

The current pattern involves an extreme weakness and high amplitude wave in the Jet Stream extending from the Central Pacific and into the Arctic, extending well above the 80 degree North Latitude line. What remains of the cold air pool has been split, with some of the cold air mass shoved toward Greenland and the Canadian Archipelago and the remainder shoved toward the Kara Sea. Driving through it all is a wedge of warmer air accompanied with the southerly winds, winds that originated in the tropics near Hawaii.

Links:

Earth Nullschool

NOAA/GFS

University of Maine

The Arctic Methane Monster Exhales: Third Tundra Crater Found

Yamal Hole

(One of three massive holes found in Siberia. The prominent theory for the holes’ formation is a catastrophic destabilization of sub-surface methane under thawing tundra. Image source: The Moscow Times.)

Add salt, sand, and thawing methane pockets buried beneath scores of feet of warming permafrost together and what do you get? Massive explosions that rip 200-300 foot deep and 13-98 foot wide holes in the Siberian earth.

The name for the place where this strange event first happened, in Russian, is Yamal, which roughly translates to mean ‘the end of the Earth.’ Now, three holes of similar structure have appeared over a 700 mile wide expanse of Siberian tundra. The most likely culprit? Catastrophic destabilization of Arctic methane stores due to human-caused warming.

A Tale of Dragon’s Breath: How the Yamal Event Likely Unfolded

About 10,000 years ago, as the great glaciers of the last ice age gave up their waters in immense surges and outbursts into the world ocean, a broad section of Siberian tundra was temporarily submerged by rising seas. But with the loss of the great glaciers, pressures upon the crust in these zones subsided and, slowly, the newly flooded tundra rose, again liberating itself, over thousands of years of uplift, from the waters.

The land remained frozen throughout this time, covered in a layer of ice — solid permafrost hundreds of feet deep. But the oceanic flood left its mark. Salt water and sand found its way into cracks in the icy soil, depositing in pockets throughout the frozen region’s earth.

And there this chemical brew remained, waiting to be deep-frozen and sequestered as the glaciers of a new age of ice advanced over the Earth.

Arctic Warming Trend 1960 to 1990

(Arctic warming trend from 1960 to 1990. Image source: NOAA.)

But this event, foretold and anticipated in the bones of Earth, did not come to pass. Instead, human beings began dumping billions of tons of heat-trapping carbon into the atmosphere. They dug up mountains of ancient carbon and burned it. And now those mountains of carbon lived in the air, thickening it, trapping heat.

For Siberia, this meant rising temperatures. At first, the increase was slow. Perhaps a tenth of a degree per decade. But by the time the 20th Century was closing and the 21st Century emerged, the pace of warming was greater than at any time even the Earth could remember — an increase of 0.5 degrees Celsius or more every ten years.

Now, the glaciers will probably not return for hundreds of thousands of years, if ever. And now, the brew that was waiting to be buried is instead thawing and mixing. A deep, heat-based cracking of the frozen soil that flash-bakes an alchemical mixture deposited over the ages. The result: dragon’s breath erupting from the very soil.

Explosive Eruptions From Smoking Earth

One Taz District local described the day the crater formed–

The earth was first observed to smoke. This continued for some time and then a bright flash followed by a loud bang exploded above the tundra. After the mists and smoke cleared, a large hole surrounded by mounds of ejected soil was visible. The hole tunneled like a cone more than 200 feet down. Its walls were frozen permafrost.

Siberian Craters Map

(Broad expanse of Siberia containing three massive holes, indications of explosive eruptions in the permafrost set off by thawing methane mixed with salt, water and sand. The holes are all in the range of 200-300 feet deep. Deep enough to contact subsoil methane pockets or, in some cases, frozen clathrate. Image source: The Daily Mail.)

A single event of this kind might be easy to overlook as an aberration. A freak case that might well be attributed to unique conditions. But over the past two weeks not one, not two, but three large holes, all retaining the same features, have appeared within the same region of Yamal, Russia.

A single event may well be easily marked off as a strange occurrence, but three look more like the start of a trend.

Weather Underground notes:

The holes may foreshadow bigger problems for our planet in the near future, scientists worry. Permafrost around the Arctic contains methane and carbon dioxide, and both could be dangerous to our environment if released, according to a report from the National Snow and Ice Data Center. As long as the permafrost remains frozen, the report adds, this isn’t a concern, but climate models have painted a grim future for rising temperatures in the Arctic.

And with temperatures in the Arctic, and especially over Siberia, rising so fast, the permafrost is not remaining frozen. It is instead thawing. And together with this thaw comes a growing release of carbon stored there over the 2-3 million year period since the ice ages began their long reign. It is a release we can expect to continue together with human-caused warming. One that is critical to abate as much as possible, if we are to have much hope for a climate favorable for human beings and the continuing diversity of life on this world. How rapidly and violently the Arctic responds to our insults depends on how hard we push it. And right now, through an amazing human carbon emission, we are now pushing the Arctic very hard.

Jason Box, a prominent Arctic researcher and head of the Dark Snow Project, noted Sunday in his blog, Meltfactor:

What’s the take home message, if you ask me? Because elevated atmospheric carbon from fossil fuel burning is the trigger mechanism poking the climate dragon. The trajectory we’re on is to awaken a runaway climate heating that will ravage global agricultural systems leading to mass famine, conflict. Sea level rise will be a small problem by comparison. We simply MUST lower atmospheric carbon emissions. This should start with limiting the burning of fossil fuels from conventional sources; chiefly coal, followed by tar sands [block the pipeline]; reduce fossil fuel use elsewhere for example in liquid transportation fuels; engage in a massive reforestation program to have side benefits of sustainable timber, reduced desertification, animal habitat, aquaculture; and redirect fossil fuel subsidies to renewable energy subsidies. This is an all hands on deck moment. We’re in the age of consequences.

If the warming trends continue and fossil fuel burning does not abate, these holes may be only minor explosive outbursts compared to what may follow. In any case, given current trends, it appears entirely possible that more and more of these strange holes will be appearing throughout the Arctic. An ugly sign of the danger inherent to our time.

Links:

Another Siberian Hole Discovered

Not So Mysterious Hole Found in Siberia

Two New Holes Appear in Siberia

Is the Climate Dragon Awakening?

Siberian Tundra Holes are a Mystery to Me

Is this the Compost Bomb’s Smoking Gun?

It’s All About Frozen Ground

Arctic Climate: A Perspective For Modeling

 

No Excuse Not To Transition: Denmark Wind at 5 Cents Per Kilowatt Hour

Running the world on renewable energy.

If you listen to the fossil fuel cheerleaders, the possibility is more remote than ever. Earlier this month, a few oil and natural gas fracking boosters in the EU derided the high cost of energy in Europe. They claimed that shifting to a policy of climate and groundwater threatening fracking could free them from both energy price shock and dependence on threatening overseas powers like Russia.

Unfortunately, such, unattached-to-reality, fossil fuel boosting by former industry professionals turned politician isn’t new. For these wayward ministers had missed recent developments in nearby Denmark providing a real long-term solution to both high energy prices and dependence on foreign suppliers, and all without the added hassle of threatening Europe’s water supplies or pushing the world one step closer to climate change game over.

Cheaper Than Other Forms of Energy

GE Wind Turbine with Battery Back-up

(GE wind turbine with battery backup in the turbine housing stores power for times of peak demand or when the wind is not blowing. Image source: Smart Planet.)

For according to a recent report from the government of Denmark, new wind power coming online in 2016 will cost half that of energy now provided from current coal and natural gas based power plants. The net price would be equal to 5.4 cents (US) per kilowatt hour.

Rasmus Petersen, Danish Minister for Energy, Climate and Buildings was far more sanguine than a number of his wayward peers regarding renewable’s prospects:

“Wind power today is cheaper than other forms of energy, not least because of a big commitment and professionalism in the field. This is true both for researchers, companies and politicians.”

“We need a long-term and stable energy policy to ensure that renewable energy, both today and in the future is the obvious choice.”

Not included in Rasmus’ statement is the amount of monetary damage and loss of life that would inevitably be prevented by shifting the energy base to renewables and away from climatologically harmful fossil fuels. Damage to crops, damage from extreme weather, loss of coastal infrastructure, loss of fisheries, loss of whole ecologies, and increasing risks of a runaway global warming feedback in the Arctic are all reduced or prevented under such a shift. Though there is currently no price mechanism to add these monumental costs inherent to fossil fuel use to the current energy marketplace, the effects are ongoing and born by all of broader society.

It’s a kind of tax fossil fuel use foists on us all. A tax that includes potential loss of life as an ultimate levy. And with each passing year, the pain and harm from that wreckage-inducing tax increases.

In addition to broadly preventing such harms, an ever-increasing energy independence comes with a majority reliance on renewables as base energy.

EU Still Pushing for Renewables Expansion

Despite the rather loud voices of a couple of fossil fuel cheerleaders, the EU is pressing hard for increasing renewable energy generation. In total, the EU commission is now recommending that member states, on aggregate, set a 30 percent renewable energy production target and a 40% emissions reduction goal. This would more than double the 14.1 % renewable energy use achieved throughout the EU during 2012 and rising through 2014.

The EU’s action comes on the back of a flurry of new reports showing that 100% reliance on renewable energy for electricity and base fuel is now possible given current technology and existing markets. These studies found complete replacement of fossil fuel infrastructure, including transportation, to be possible given current resources and technology for all new energy by 2020-2030 and for all energy by around 2050. Meanwhile, many of these studies found that costs for replacement were surprisingly low, especially when efficiency and the elimination of unnecessary consumption were added in.

Under the current situation of amplifying damages caused by human-induced climate change, such policies provide a means of escape from escalating harm and of a prevention of the worst effects of warming-related climate and biosphere shocks. Governments around the world should take a good, hard look at such policies going forward as the economic excuses for perpetrating such harm by continuing fossil fuel exploitation, given the availability of 5 cent per kilowatt wind energy, grow quite thin indeed.

Links:

Wind Power Undercuts Fossil Fuels to Become Cheapest in Denmark

Onshore Wind Now Cheapest Form of Electricity in Denmark

Providing All Global Energy With Wind, Water and Solar Power

Smart Planet

Fossil Fuel Cheerleaders Push ‘Shale Option’

 

 

Large Methane Plumes Discovered on Laptev Continental Slope Boundary: Evidence of Possible Methane Hydrate Release

080407-O-xxxxX-004

(The Swedish Icebreaker Oden — now home to the 80 scientists and tons of equipment of the SWERUS 2014 research expedition aimed at measuring sea floor methane release throughout the Arctic this summer. Among the scientists leading the expedition is Igor Semiletov whose 2011 expedition discovered 1 kilometer wide plumes of methane issuing from the floor of the East Siberian Arctic Shelf. Image source: Commons.)

SWERUS-C3 researchers have on earlier expeditions documented extensive venting of methane from the subsea system to the atmosphere over the East Siberian Arctic Shelf. On this Oden expedition we have gathered a strong team to assess these methane releases in greater detail than ever before to substantially improve our collective understanding of the methane sources and the functioning of the system. This is information that is crucial if we are to be able to provide scientific estimations of how these methane releases may develop in the future (emphasis added). — Örjan Gustafsson

*     *    *    *     *

Over the past few years, the Arctic has been experiencing an invasion.

Emerging from the Gulf Stream, a pulse of warmer than normal water propagated north past Iceland and into the Barents Sea. There, it dove beneath the surface fresh water and retreating sea ice, plunging to a depth of around 200-500 meters where it concentrated, lending heat to the entire water column. Taking a right hand turn along the Siberian Continental Shelf, it crossed through the mid water zones of the Kara. Finally, it entered the Laptev and there it abutted against the downward facing slopes of the submarine continental region.

As the water temperatures at these depths warmed, researchers began to wonder if they would trigger the destabilization of methane hydrate stores locked  in deeper waters along the shelf boundary. And, now, a new expedition may have uncovered evidence that just such an event is ongoing.

Methane Hydrates and Troubling Releases from the East Siberian Arctic Shelf

Oceanic methane hydrates form when methane upon or beneath the sea bed freeze into a crystalline ice lattice. It is a hybrid water-methane mixture that only remains stable at higher sub-sea pressures and lower temperatures. Normally, oceanic hydrates form at great depth (about 600 meters or deeper) where a combination of high pressure and low temperature are the prevailing environmental factor. But the colder Arctic is a sometimes exception to this general rule.

In recent years, deep ocean warming due to human caused climate change has accelerated. It is feared that this warming may unlock vast stores of methane laying frozen along the deep sea bed or in more vulnerable continental shelf slope zones.

This warming is also feared to have begun a process of methane release along a unique submarine feature called the East Siberian Arctic Shelf (ESAS). There rising temperatures are hypothesized to have sped the thaw of submarine permafrost.

Frozen permafrost stores biologically generate gaseous methane at depths of 10-80 meters. Methane hydrate stores are locked away at depths starting at around 100 meters. Submerged beneath only a couple hundred feet of water, these methane stores are much shallower and, therefore, are in a naturally unstable zone.

The East Siberian Sea zone is unique due to the fact that it was only recently flooded, in geological terms. The frozen permafrost has only rested beneath the Arctic Ocean waters since the end of the last ice age and much of it remained frozen due to chill Arctic conditions. But now, human-caused climate change is driving warmer and warmer waters into the Arctic environment.

Elevated Methane ESAS

(Elevated atmospheric methane levels over East Siberian and Laptev Seas during October of 2013. Image source: Arctic News via Methane Tracker)

As the warming progressed during the first decade of the 21st Century, researchers observed what appeared to be an increasing release of methane from these thawing permafrost stores. In 2011, plumes from the sea bed stretching 1 kilometer across were observed by an Arctic expedition headed by Igor Similetov and Natalia Shakova. It appeared that the 250 to 500 gigatons of carbon locked in the ice in that shallow ocean was destabilizing and releasing from the sea floor as methane.

Now it is estimated that about 17 megatons of methane from this store vents through the shallow waters into the atmosphere each year. But this may just be the start of a far larger emission.

Methane Hydrate Release During Past Hothouse Events

Though the ESAS carbon and methane store is arguably one of the most vulnerable to human-caused warming, a far greater store of methane hydrate is estimated to be locked in crystalline ice lattice structures along the world’s continental slope systems and in the world’s deep ocean environments. Since the Earth has been cooling for the better part of 55 million years, a huge store of carbon as methane is now thought to have accumulated there. In total, between 3,000 and 10,000 gigatons of carbon are estimated to be captured in this vast store.

methane bubbles near the Laptev sea surface

(Methane bubbles near the Laptev Sea surface as observed by the SWERUS expedition last week. These bubbles were issuing from what are thought to be destabilizing methane hydrates along the Outer Laptev Continental Slope zone. Image source: Stockholm University.)

Global warming science, especially the science related to paleoclimate, indicates that Earth Systems warming tends to dump a lot of heat into the deep ocean. The atmosphere ocean-interface along the equator warms and becomes salty due to enhanced evaporation. The warmer, saltier water sinks, driving heat into the deep ocean. At the poles, ice sheet melt sends out a wave of fresh water along the ocean surface. The fresh water acts as an insulator between atmosphere and water, locking the warm water beneath the surface and pushing it toward the bottom. This process, called ocean stratification, is, among other things, an ocean heat exchange machine that turns the ocean bottom into a warming-induced house of horrors.

We would expect a similar process to be set in motion through human warming.

Ultimately, this combination of forces results in a collision of warm water with frozen methane stores and serves as a mechanism for their destabilization. If even a portion of this deep ocean methane hits the air, it can further accelerate already rampant warming.

Today, we may be at the start of just this kind of process.

Large Methane Plumes Discovered Along The Laptev Slope Boundary

Last week, large plumes of methane were found to be issuing from the outer Laptev Sea floor at the border zone where the bottom climbs up to meet the East Siberian Arctic Shelf. Researchers on the scientific study vessel Oden found:

elevated methane levels, about ten times higher than in background seawater, [that] were documented … as we climbed up the steep continental slope at stations in 500 and 250 m depth.

Expedition researchers noted:

This was somewhat of a surprise. While there has been much speculation of the vulnerability of regular marine hydrates (frozen methane formed due to high p [pressure] and low T [temperature]) along the Arctic rim, very few actual observations of methane releases due to collapsing Arctic upper slope marine hydrates have been made.

An Ice-Free Laptev Sea

(An ice-free Laptev Sea on July 28, 2014. Last week, researchers discovered a kilometers wide plume of methane bubbling up from the Continental Shelf sea bed in these typically-frozen waters. Image source: LANCE-MODIS.)

Overall the size of the release zone was quite large, covering several kilometers of sea bed and including over 100 methane seepage sites:

Using the mid-water sonar, we mapped out an area of several kilometers where bubbles were filling the water column from depths of 200 to 500 m. During the preceding 48 h we have performed station work in two areas on the shallow shelf with depths of 60-70m where we discovered over 100 new methane seep sites.

Due to the depth and location of the methane above the continental slope zone, researchers hypothesize that the source of the methane is from hydrate stores in the region.

It is worth noting that though it is rare to observe methane releases from the upper slope zone, current science has found destabilizing hydrates in deep water off the US East Coast along the continental shelf slope zone and in deep waters off Svalbard among other places. In addition, satellite observation of the Arctic Ocean has recently shown periods of high and above normal methane readings in the Laptev, Kara and East Siberian Seas. Elevated atmospheric readings have also appeared over the Nares Strait near Greenland. These are all zones that have experienced substantial deep ocean warming over the past few decades.

SWERUS 2014 is now heading toward ESAS waters where so many large methane plumes were discovered in 2011. There, the expedition hopes to use its impressive array of sensors and expertise to better define and understand what appear to be large-scale but not yet catastrophic methane releases underway there.

Links:

SWERUS 2014

SWERUS-C3

LANCE-MODIS

Stockholm University

Arctic Methane Monster Shortens Tail

Arctic News

Commons

Hat tip to TodaysGuestIs

Hat tip to Colorado Bob

 

 

 

 

 

 

 

 

Big Arctic Warm-Up Predicted For This Week: Melt to Speed Up, Or Sea Ice to Show Resiliency Due to Variability, Strength of Negative Feedbacks?

Rate of Sea ice volume decline for all months

(Rate of Arctic sea ice volume decline with trend lines for all months in the PIOMAS measure. Updated through June of 2014. Image source: Wipneus.)

What it really all comes down to is heat energy balance. Beneath a warming, moistening Arctic atmosphere, sea ice loses resiliency due to slow attrition of the ice surface, due to loss of albedo as ice melts, and due to slower rates of refreeze during winter. Atop a warming Arctic Ocean, sea ice loses bottom resiliency, tends to be thinner and more broken, and shows greater vulnerability to anything that churns the ocean surface to mix it with the warming deeper layers — storms, strong winds, powerful high pressure systems.

It is this powerful set of dynamics under human caused climate change that has dragged the Arctic sea ice into what has been called a ‘Death Spiral.’ A seemingly inexorable plunge to zero or near zero ice coverage far sooner than was previously anticipated.

But in the backdrop of what are obviously massive Arctic sea ice declines and a trend line, that if followed, leads to near zero ice coverage sometime between next year and 2030, lurk a few little details throwing a bit of chaos into an otherwise clear and, rather chilling, picture of Arctic sea ice decline.

The Fresh Water Negative Feedback

One of these details involves the greatly increasing flow of fresh water into the Arctic Ocean. For as the Arctic heats, it moistens and rainfall rates over Arctic rivers increase. This results in much greater volumes of fresh river water flushing into the Arctic Ocean and freshening its surface. Another source of new fresh water flow for the Arctic is an increasing rate of Greenland melt outflow. The volumes, that in recent years, ranged from 300 to 600 cubic kilometers, can, year-on-year, add 1-2% to the total fresh water coverage in the Arctic Basin and North Atlantic. These combined flows mean that fresh water accumulates more rapidly at the surface, resulting in an overall increase in fresh water volume.

Change in salinity

(Change in Arctic Ocean Salinity between the mid 1990s and mid 2000s. Image source: Benjamin Rabe, Alfred Wegener Institute via Science Daily.)

Since 1990, we have observed just such an accumulation. For a recent study in 2011 showed that since 1992, Arctic Ocean surface fresh water content had increased by 20%. A remarkable increase due to the changing conditions that included greatly increased river outflows into the Arctic Ocean as well as a ramping ice melt from Greenland and the Canadian Archipelago Islands.

Fresh water is less dense than salt water and will tend to float at the surface. The physical properties of fresh water are such that it acts as a heat insulator, deflecting warmer, saltier ocean water toward the bottom. As such, it interrupts the heat flow from deeper, warmer Arctic Ocean waters to the sea surface and into the atmosphere.

As an added benefit to the ice, fresher water freezes at higher temperatures. So as the Arctic Ocean freshens, it creates a bit of wiggle room for the sea ice, giving it about a 0.5 to 1 C boost so it can sometimes even form during conditions that were warmer than those seen in the past.

In this manner, an expanding fresh water zone acts as a kind of last refuge for sea ice in a warming world. A zone in which sea ice may even periodically stage comebacks in the backdrop of rampant human warming. We may be seeing such a comeback in the Antarctic sea ice, which has shown anomalous growth and even contributed to an expanding cool atmospheric zone in the Southern Ocean, despite ongoing global warming. The freshwater and iceberg feeds from the vast Antarctic ice sheets have grown powerful indeed due to warm water rising up to melt the ice sheets from below, letting loose an expanding surface zone of ice and fresh water. This process will necessarily strengthen as more and more human heating hits the deep ocean and the submerged bases of ice sheets. An effect that will dramatically and dangerously reverberate through the ocean layers, setting the stage for a horrible stratification.

But today, we won’t talk about that. Today is for negative feedbacks due to fresh water flows from increasing polar precipitation and through ice sheet melt.

In the end, human warming dooms Arctic sea ice to an eventual final melt. But before that happens the increasing volume of fresh water from river flows and the potentially more powerful negative feedback coming from a growing ice and fresh water release from Greenland and the Canadian Archipelago will inevitably play their hands.

The Slower Than Terrible 2014 Melt Season

And so we arrive at the 2014 sea ice melt season for the Arctic. As with 2013, the melt got off to a relatively rapid start and then slowed through July as weather conditions grew less favorable for ice melt. Above freezing temperatures hit the ice above 80 degrees North about one week later than average, also providing some resiliency to the central ice — a condition that historically leads to higher end-season sea ice values in about 80 percent of the record.

The high pressure systems of early June gave way to weak storms and overall cloudy conditions. This shut down the cycle of strong melt, compaction, and transport of ice out of the Arctic that may have put 2014 on track for new records and another horrible slide down the Arctic sea ice death spiral. Instead, conditions set up for slower melt. Ice was retained and backed up through the Fram Strait, and the ice spread out, taking advantage of the thickened fresh water layer to slow its summer decline.

This is in marked contrast to the terrible 2007 and 2012 melt seasons which severely damaged the ice, making a total Arctic Basin ice melt all more likely in the near future. And it was also cutting against the 2010 to 2012 trend in which sea ice volume measures continued to plunge despite ambiguous numbers in sea ice area and extent (no new record lows) during 2010 and 2011. For this year, sea ice volume is now, merely, ‘only’ 4th lowest on record, according to the PIOMAS measure.

The fact that we are looking at a 4th lowest year as another bounce-back year is a clear indication of how terrible things became since 2010. And so far, this year’s melt has, like 2013, simply not been so terrible and terrifying. A wag back toward 2000s levels that is likely due to the inherent negative feedback of freshening surface water and to a swing in natural weather variability that, during any other year and in any other climate, would have pushed summer ice levels quite high indeed.

If the storms had been strong enough to draw a large enough pulse of warm water to the surface, the story might have been different. But, as it stands, this summer of weak Arctic weather hasn’t activated any major melt mechanism to push the ice into new record low territory. And so in many major monitors we are now above 2013 melt levels for this day.

Cryosphere Today shows sea ice area at 5.22 million square kilometers, above 2013 and just slightly above 2011 while ranging below 2008 for the date. Overall, the area measure is at 6th lowest on record for the date. Meanwhile, NSIDC shows sea ice extent at 7.74 million square kilometers or just above 2013 values for the same day but remaining below 2008 and 2009 by a substantial margin. Overall, also a sixth lowest value for the date:

Sea ice july 2014 v2

(NSIDC chart comparing sea ice melt years 2012 [dashed green line], 2008 [maroon line], the 1981 to 2010 average [solid line] and 2013 [pink line]. Image source NSIDC.)

So in the sea ice butcher board tally, with the negative feedback of fresh water floods and glacial melt moderately in play and with weather that is highly unfavorable for melt, we currently stand at 4th lowest in the volume record, 6th lowest in the extent record, and 6th lowest in the area record.

And now, things may just be about to get interesting…

Forecast Shows Arctic Heatwaves on the Way

GFS and ECMWF model runs show two warm ridges of high pressure developing over the Arctic this week. And the emergence of these warm and moist air flows into the Arctic may well have an impact by pushing the Arctic back toward melt-favorable conditions.

The first ridge is already expanding across the Canadian Archipelago. Yesterday it brought 80 degree temperatures to Victoria Island which still sits between wide channels clogged with sea ice. Smoke from wildfires is being entrained in this ridge and swept north and east over the remaining Archipelago sea ice and, today, the Greenland Ice Sheet.

While the smoke aerosol from fires blocks some of the incoming solar short wave radiation, it absorbs and re-radiates it as long-wave radiation. Many studies have shown this albedo-reducing darkening of the cloud layer by black and brown carbon aerosols has a net positive warming effect. In addition, the soot falls over both land and sea ice where it reduces reflectivity medium to long-term (Dark Snow).

Smoke streaming over Canadian Archipelago and Northwestern Greenland

(Smoke associated with record wildfires in the Northwest Territory streaming over the Canadian Archipelago, Northern Baffin Bay, and Northwestern Greenland beneath a dome of record heat. Image source: LANCE-MODIS.)

The ridge is expected to expand east over the next few days until it finally settles in as a moderate-strength high pressure system over Greenland. There it is predicted to juxtapose a set of low pressure systems that will slowly slide south and east over Svalbard. The conjoined counterclockwise cyclonic wind pattern of the lows and the clockwise anti-cyclone of the high over Greenland in the models runs over the Fram Strait. And so, for at least 4-5 days, the models predict a situation where sea ice transport out of the Arctic may be enhanced.

Meanwhile, on the other side of the Arctic, a series of high pressure systems are predicted to back up over the Pacific Ocean section of Irkutsk and Northeast Siberia. This ridge is expected to dominate coastal Siberia along the Laptev and East Siberian Seas. Temperatures along the coast are expected to reach 15-20 C above average, while temperatures over the waters are expected to rise to melt enhancing levels of 1 to 5 C.

Ahead of the ridge runs a warm frontal boundary that is heavily laden with moisture and storms. So a liquid and mixed precipitation band is likely to form over the East Siberian and Beaufort Sea ice as the ridge advances.

The ridge is projected to drive surface winds running from the south over the East Siberian Sea, across the polar region, and into the Greenland and Barents Seas. This cross-polar flow of warm, moist air will also enhance the potential for ice transport.

Melt Pattern

(Pattern more favorable for sea ice melt and transport emerging over the next seven days. This Climate Reanalyzer snapshot is at the 120 hour mark. Note Arctic positive temperature anomalies at +1.18 C. Will the pattern override potential negative feedbacks such as high fresh water content in the Arctic and unfavorable weather likely produced by the late emergence of temperatures above 0 C in the 80 North Latitude zone? Image source: University of Maine.)

Overall, it is a weather pattern that shows promise to increase melt, especially in the regions of the Canadian Archipelago and the East Siberia Sea, and to speed ice mobility and transport. Persistent lows near the central Arctic for the first half of this period and shifting toward Svalbard during the latter half will continue to disperse sea ice which may lend one potential ice resiliency feature to a pattern that is, otherwise, favorable for ice loss.

Negative Feedbacks and Weather Unfavorable For Melt

If the melt pattern described above comes to impact the ice and push greater rates of sea ice loss over the coming days and weeks, it’s likely that end season 2014 will end up with sea ice measures below those of 2013, but above the previous record lows seen during past years. This would likely put 2014 well within the range of the post 2007 era at 3rd to 5th lowest on record for most monitors. Not a new record year, but still well within the grips of the death spiral.

If, however, the weather predicted does not emerge or the sea ice retains resiliency through it, then 2014 stands a chance of pushing above final levels seen in 2013. In such an event, end season area and extent measures may challenge levels last seen during 2005 while sea ice volume maintains between 4th and 5th lowest.

If this happens, we may need to start asking this question:

Are negative feedbacks, in the form of greatly increased freshwater flows from rivers and glaciers, starting to pull the Arctic sea ice out of a high angle nose dive and are they beginning to soften the rate of decline? Or is this just a year when weather again wagged the dog as natural variability played a trump card for the summer of 2014 but further drives for new records will follow come 2015, 2016, or 2017?

In any case, near-term sea ice forecasts remain somewhat murky, as they should given the high instability of the current situation.

Links:

Science Daily

Now Melts the Arctic

The Arctic Ice Blog

NSIDC

LANCE-MODIS

University of Maine

PIOMAS

Cryosphere Today

Dark Snow

 

 

 

 

Follow

Get every new post delivered to your Inbox.

Join 3,876 other followers

%d bloggers like this: