Worst Case Carbon Dioxide Emissions Increases Continue — Hitting 40 Billion Tons Per Year in 2013

A new report from the Global Carbon Project shows the world’s machines are belching more carbon dioxide than ever before. The report, which measures global CO2 emissions, found that gases from all sources jumped by more than 750 million tons during 2013 — a 2.3 percent increase in the dangerous hothouse gas over already extreme 2012 emission levels.

In total, 39.8 billion tons of CO2 hit the atmosphere in 2013, up from about 39.1 billion tons in 2012.

Global Carbon Emissions vs RCP Scenario

(Global carbon emissions continued along a worst-case track during 2013. Note that estimated temperature increases are for this century only. For context, it took 12,000 years for the world to warm 5 degrees Celsius at the end of the last ice age. Image source: Global Carbon Project.)

On the current track, global CO2 emissions will double in about 30 years. This pace of emissions increase is along the worst-case path projected by the UN’s IPCC. One that will hit 8.5 watts per meter squared of additional warming at the top of the Earth’s atmosphere and greater than 1,000 ppm CO2 equivalent greenhouse gas heat forcing by the end of this century.

Such a massive increase from human sources does not include amplifying feedback emissions from global methane or CO2 stores such as those now apparently destabilizing in the Arctic. Such emissions could add an additional 20 to 30 percent or greater heat forcing on top of the human forcing, according to scientific estimates, by the end of this century.

The massive blow would be more than enough to trigger a hothouse extinction event — one that could well rival or exceed the Permian (also known as ‘the great dying’) in its ferocity due to the very rapid pace of the human heat accumulation.

IPCC impacts

(IPCC impacts graphic taking into account the RCP 8.5 scenario. Image source: IPCC.)

During 2013, the greatest CO2 emitter by a wide margin was China at nearly 10 billion tons of CO2 all on its own. The US came in a distant second at about 5.5 billion tons with India nearing the 2 billion ton mark and taking the dubious rank of #3 CO2 emitter.

Overall, the pace of emission increase was slightly slower than during 2012, which showed a 2.5% increase over 2011. The lag was due, in part, to slowing economic growth in coal-reliant China. The massive emitter has lately shown trends toward lowering its carbon out-gassing as it half-heartedly pushes for cleaner air and less coal use. The US, on the other hand, showed a jump in carbon emissions as a trend toward greater natural gas usage whip-lashed back toward coal due to higher natural gas prices.

Greater adoption of renewable energy has slowed global carbon emission from absolute worst case levels. However, the pace of renewable adoption and increasing energy efficiency is not yet enough to knock the world off the horrific RCP 8.5 track. Such a switch would require a much stronger commitment from India and China together with an ever more rapid pace of transition away from fossil fuels for the developed world. To this point, both India and China have ominously opted out of a global climate summit to be held at the UN tomorrow. There, 120 global leaders will push for ways to rapidly reduce carbon emissions. But without buy-in from India and China, such measures may well be overwhelmed by increasing emissions from these very large and increasingly heavily mechanized Asian economies.

CO2 minimum september

(Global CO2 concentrations as measured at the Mauna Loa Observatory. Image source: The Keeling Curve.)

Meanwhile, global CO2 levels were hovering near their annual minimum at just above 395 parts per million after hitting a maximum level near 402 parts per million in May of 2014. At current rates of increase, global CO2 is likely to remain above the 400 parts per million concentration year-round within less than three years.

For context, the last time CO2 levels were this high, global temperatures were 2-3 degrees Celsius hotter than they were today and sea levels were at least 75 feet higher. But since humans emit a number of other powerful greenhouse gasses, the global CO2 measure alone doesn’t take into account the entire picture. If all other human heat trapping gasses are added in, the global CO2 equivalent heat forcing (CO2e) is around 481 ppm, which is enough to increase temperatures, long-term by about 3.8 degrees Celsius and to melt more than half of the world’s current ice sheets.

At the current pace of emission it will take less than 30 years to lock in a 550 ppm CO2 equivalent value — enough to melt all the ice on Earth and to raise temperatures by between 5 and 6 degrees Celsius long-term.

As such, the need for rapid transition to renewables together with reduction in harmful consumption could hardly be more urgent. With ever more harmful impacts being locked in with each passing year, the world needed strong global climate policy action yesterday. But action today will be better than waiting another decade or more as the situation continues to worsen.

Links:

The Global Carbon Project

The Global Carbon Budget 2014

World Carbon Emissions Hit Record High during 2013

Global Rise Reported in 2013 Greenhouse Gas Emissions

The Keeling Curve

Global Carbon Project Carbon Atlas

IPCC

“Hey! Ho! Fossil Fuels Have Got to Go!” — World Sees Largest Climate March in History Amidst Mounting Dangers

(PBS expose covering the 2014 Climate March shows that nearly 1,500 organizations including environmentalists, faith-based groups, small business groups, economic and social justice organizations, and student organizations participated in this historic event.)

According to the National Climate Data Center, the summer of 2014 was the hottest in the global record. It was a season of record wildfires, sea surface temperatures far above the 20th Century average, and of record droughts and rainfall events around the globe. And it was a year in which the ability of nations to provide food for the world’s seven billion and growing population amidst a mounting tally of extreme droughts and floods was called increasingly into question.

On Sunday September 24, 2014, the ever-more alarmed people of the world responded.

In New York City, an estimated 410,000 took to the streets to protest the broad failure by global governments and businesses to effectively respond to the growing threat of an ever-increasing fossil fuel emission that is rapidly pushing Earth toward a dangerous hothouse environment. In London, nearly 50,000 protesters gathered as Melbourne, Australia saw 30,000 climate marchers. 25,000 lifted their voices in Paris, 15,000 marched through Berlin, and 5,000 gathered in Rio de Janeiro.

Overall, more than 2,500 protest events occurred in 166 countries around the world. Total participation is now estimated to be more than 750,000 — the largest and most widespread climate protest in history.

Climate March Grist

(Hundreds of thousands gather in New York City for Climate March. Image source: Grist.)

In New York City, the massive march began at 11:30 AM at Columbus Circle near Central Park. More than 550 buses disgorged passengers bearing signs labeled with a variety of apt sayings including: “There is No Planet B,” “Carbon Tax Now,” “Go Vegan,” “This Country has a Koch Problem,” “Never, Never Vote Republican,” and “We Can’t Burn all the Oil on the Planet and Still Live on It.”

The march, which included more than 50,000 students, numerous members of the scientific community, and such notables as Bill McKibben, Ban Ki-moon, Jane Goodall, Vandana Shiva, Sheldon Whitehouse (D-R.I.), Bernie Sanders (I-Vt), Charles Schumer (D-N.Y.), Leonardo DiCaprio, and Al Gore, at times stretched to fully 4 miles in length. Loud chants such as “Hey! Ho! Fossil fuels have got to go!” rocked what many still believe to be the center of global capital.

I Can't believe I'm having to protest this

(Sign speaks for itself, doesn’t it? Image source: Here.)

The rallies came just two days before a global climate summit was scheduled to convene on Tuesday, September 22. The summit, which will include more than 120 world leaders aims to provide more aggressive measures to attack the vast and growing threat of carbon pollution. As of 2013, recent studies showed that human hothouse emissions jumped by another 2.3% — primarily driven by increases in China, India and the U.S. Ominously, both China and India — previous bad actors on climate change due to astronomical increases in coal burning — have decided to opt out of the current climate summit.

A press conference held prior to the climate march drove home the growing plight of millions of people around the world already staring down the face of fossil-fuel inflicted harm. A number that is likely to jump to billions unless our race toward a hothouse extinction is rapidly halted.

peoples-climate-march17

(Is this a game? Image source: Here.)

Stanley Sturgil, a retired coal miner from Kentucky now suffering from black lung made this statement at a press conference before the march:

“Today I march because I want to behold a brighter future. We have destroyed ourselves. We have destroyed our health and I’m here because our political leaders have failed us.”

Marshall Island resident Kathy Jetnil-Kijiner also made this deeply resonant statement:

“We need to act now… We only have one atmosphere and we of the Marshall Islands only have one land we call home. We don’t want to move and we shouldn’t have to move.”

Sadly, if world leaders continue to fail to hear the pleas of their increasingly foundering constituents, residents of the Marshall Islands won’t be the only ones on the move. The migration, under business as usual carbon emissions and an emerging and deadly hothouse world will comprise a majority of the human race.

Links:

Hundreds of Thousands Turn out for People’s Climate March

Summer of 2014 Hottest on Record

Climate Change Summit: Global Rallies Demand Action

Great Photos From the Climate March

Earth Surface During August of 2014 Was Hottest Ever Recorded

The monthly global temperature records just keep falling…

Despite no El Nino declared, an extraordinarily hot global ocean surface keeps dumping heat back into the atmosphere. This transfer resulted in the hottest March-through-May period in the global record and has pushed numerous record spikes in the global measures this summer. By August, according to NASA, the global average had again climbed to never-before-seen levels.

As of yesterday’s report, NASA showed that the Global Land-Ocean Surface Temperature Index had climbed to 0.70 degrees Celsius above the mid 20th Century average and about 0.95 degrees Celsius above the 1880s average. The previous record high for the period was set in 2011 at 0.69 degrees C above the global 1951 to 1980 average.

global temp maps

(Global surface temperature departures according to NASA GISS. Image source: NASA.)

Throughout the world, global ocean surface temperatures showed extraordinary departures above average for the month. Greater variance was experienced over continental land masses and over the polar regions.

Zonal anomalies showed far greater heat amplification near the southern polar region, especially in the region near 80 south latitude. In the Northern Hemisphere the tundra region near 60 north latitude focusing in Northeast Siberia near the methane emitting zone of the East Siberian Arctic Shelf, the region north of the Caspian Sea, and Baffin Bay and Northeast Canada showed the greatest high temperature anomalies. Only the high Arctic and regions in or near the southern ocean showed widespread and significant cooler than average zonal readings.

You can see these zonal anomalies in the graph provided by NASA below:

August zonal anomalies

(Temperature departures by latitudinal zone. Image source: NASA.)

A Catastrophic Pace of Warming

To understand these record high global temperatures, it is useful to consider the broader paleo-climate context. In this context, the global temperature difference between 1880 and the last ice age was about 5 degrees Celsius. So the current temperature departure, driven by human greenhouse gas emissions, is equal to about 1/5 the difference between the 19th century and an ice age, but on the side of hot.

As it took about 12,000 years for the post ice-age warming to occur, the recorded pace of warming since 1880 is about 20 times faster than that period of extreme Earth system change. With the predicted pace of warming expected to increase even further and with ice sheets still covering the surface of the Earth (which greatly help to mitigate the pace of warming spikes), this current velocity of change is both likely unprecedented and catastrophic.

Links:

NASA GISS

Hothouse Rains for Kashmir: Worst Flooding in More Than 60 Years Puts 450 Villages Under Water

Kasmir Floods September 5

(The hurricane over land like signature that has become all-too-common during recent years as the Earth has continued to warm is plainly visible over the Kashmir region on September 5 of 2014. A multi-day flooding event that is now the worst for this Central Asian state in more than 60 years. Image source: LANCE-MODIS.)

On Tuesday, a bank of thunderstorms fed by an atmospheric river of moisture off the Arabian Sea exploded into a mountain of cloud over Kashmir in Central Asia. The rains swept in and continued through Wednesday, Thursday, Friday and Saturday. A terrible flooding rain that has now killed 160 people, forced the evacuation of 2,500 villages and buried more than 450 villages under waters rising high enough to cover the hills.

River flooding has been so intense that flood level gauges have simply been buried, with towns and cities throughout the region facing catastrophic damage. In Srinagar, a Kashmiri city of 1.2 million souls, the situation today was dire. Union Minister Ragnath Singe, visited the scene earlier today but had to cancel an aerial tour due to ongoing severe weather keeping flights grounded:

“If there is so much devastation in the city, I wonder what would be the situation like in rural areas. I want to assure the people and the government of Jammu and Kashmir that the central government stands beside you in your hour of crisis and we extend all necessary help to you,” Singe noted.

The flood toll now includes more than 50 bridges, hundreds of kilometers of roads, and the loss of numerous power plants and sub stations due to inundation. Vast destruction of food crops is also underway, though with the rains still ongoing it is impossible to provide a full tally.

Minister Singe, amid assurances of full-scale mobilization to aid disaster victims and prevent loss of life has made a plea for 25,000 tents and 40,000 blankets to help provide shelter and care for the swelling ranks of refugees from this ongoing catastrophe.

Conditions in Context

Reported Instances of Extreme Weather since 1988
(Reported instances of extreme weather since 1988. Image source: University of Nottingham.)

Human-caused climate change greatly amplifies the conditions that lead to more intense rainfall and flooding events. For each 1 degree Celsius of temperature increase, the hydrological cycle intensifies by 8 percent. So evaporation events and rainfall events grow ever more intense as the world warms.

Though storms, on aggregate, dump 8 percent more rain, and evaporation sucks 8 percent more moisture up from the lands and ground, the uneven nature of weather results in a powerful amplification of extreme events. So what you end up with is both far more powerful severe storm systems and far more intense and rapidly asserting drought conditions.

We see these increasingly more dangerous events now at 0.85 C warming above the 1880s average. And we have locked in about 1.9 C warming this century and 3.8 C long-term warming due to the gasses we’ve already emitted. But continued fossil fuel burning will make the situation considerably worse.

Links:

Jammu and Kashmir Flood Toll Climbs to 160

Jammu and Kashmir Floods are Worst in Six Decades

LANCE-MODIS

University of Nottingham

How Climate Change Spurs Severe Weather

Hat-tip to Colorado Bob

March to Stop Climate Disruption: “This is the Most Fateful Battle in Human History, We Will Fight it Together”

Climate change is more than just an environmental issue. It’s an issue that defines how we live, where we will life, and whether or not our children and our grandchildren will live. For billions of innocent creatures across this world it’s an issue of extinction or continued survival. The human animal included.

It is the most critical justice issue of our time and of all time. For it determines whether or not there is a time after.

We cannot allow the forces now in the process of ravaging our world, the forces that are taking away our future, to proceed unchecked. And so we must send out this wide-ranging call for action. We must light the beacons on the mountains and hillsides and we must call all responsible people together so that their voices will drown out the all too-strong and oppressive forces calling for silence.

We must be heard. Life demands it. Love for our children demands it.

The cause could not be more urgent. For time is swiftly running out.

We must act! We must act! We must ACT!!

Or we will be consigned to the dust by our own and ever-too-violent hand.

Disruption and The People’s Climate March

“This is the most fateful battle in history and we will fight it together!” — Bill McKibben

I urge you all to join me in going to New York for The People’s Climate March on September 21st. And I urge you to join with me in watching what is likely to be the most significant independent documentary film ever released — Disruption — which will begin airing tomorrow (see trailer above).

the wheel of time is empty and the book of life is blank

(Who drew this mysterious and chilling pictogram during Renaissance times? The Wheel of Time is Empty and the Book of Life is blank. Of the triple goddess, the fates, only the Crone and the Mother remain, implying that the Virgin, representing future life, is gone. As for the skeletal Hart, I will leave that riddle to you. …This is a fate that is unacceptable.)

We must send a strong message that we will not longer stand quietly by as our climate continues to rapidly degrade and as our future is swept away. The time to languish in a steadily decaying comfort is at an end. The time to sit by as prospects fall and more of the primordial terrors of the world are unleashed is at an end.

Justice demands that our voices be heard and that our voices be so loud as to turn every ear and so defiant as to demand an answer. The right answer. The only answer to climate change — climate action.

Join with me in fighting to save life, in fighting to save our civilization, in fighting to save history.

Links:

The People’s Climate March

Disruption

Last Chance for 2014 El Nino: Second Kelvin Wave Strengthens in Pacific Amid Favorable Atmospheric Conditions

2014 has been a rough year for El Nino forecasting.

During Winter and Spring, an extraordinarily strong Kelvin wave rocketed across the Pacific. Containing heat anomalies in excess of 6 C above average, this flood of trans-Pacific warmth hit the ocean surface, dumping an extraordinary amount of heat into the atmosphere. The heat helped drive global sea surface temperatures for May, June, and July to all-time record values.

Many forecasters believed that this heat would lead to a moderate to strong El Nino event starting this summer. And, by June, NOAA was predicting that El Nino was 80% likely to emerge some time this year.

But the initial oceanic heat pulse was crushed by a failure of atmospheric feedbacks. The trans-Pacific trade winds, with a few visible exceptions, remained strong enough to suppress El Nino formation. And so it appeared that, by late July, the initial powerful heat pulse providing potential for El Nino had almost entirely fizzled.

Then, a second warm Kelvin Wave began to form even as Southern Oscillation values started to fall.

Second Warm Kelvin Wave Crosses Pacific

(Second warm Kelvin Wave running across Pacific has resurrected the potential for a weak to moderate late 2014 El Nino. Image source: Climate Prediction Center.)

This second Kelvin Wave contains a broad swath of +2 to +5 C anomaly values and is rapidly propagating toward the surface zones of the Central and Eastern Pacific. And though not as strong as the Kelvin Wave that formed earlier this year, the current Kelvin Wave is occurring in conjunction with what appears to be a somewhat more robust atmospheric feedback.

The Southern Oscillation Index, a measure of pressure differences between Tahiti and Darwin, is an indicator of Nino related atmospheric conditions. At consistent values below -8, weather variables tend to favor El Nino formation. And, for the past twelve days, 30 day averages have been below the -8 threshold. If these values extend for much longer, the coincident warm Kelvin Wave and atmospheric conditions favorable for El Nino may well set off this long-predicted event.

Model runs still show a 60-65% chance of El Nino formation before the end of this year and NOAA’s forecast continues to call for a weak El Nino forming some time in late 2014:

El Nino Forecast

(Model Forecast shows 60-65 percent chance of El Nino by November through January. Image source: CPC/IRI.)

It is worth noting that this second warm Kelvin Wave is providing the last chance for El Nino in 2014. So if atmospheric feedbacks fade and sea surface temperatures remain just on the high side of ENSO neutral, then 2014 will close without the incidence of this wide-scale Pacific Ocean and atmospheric warming event.

With weak El Nino, however, there is still a likelihood that 2014 will tie or exceed hottest ever global surface temperature values. A failure for El Nino to form will probably result in 2014 closing as one of the five hottest years on record, given current trends.

Links:

Climate Prediction Center

CPC/IRI

Southern Oscillation Index

 

 

 

 

 

 

To Fear Peak Oil, Or to Pursue it? That is the Essential Limits to Growth Question

On a world in which fossil fuel burning is now in the process of setting off various events of geological scale, one of the things we could well hope for most is a peak in fossil fuel supply. Such an event would force countries and economies to adjust. To abandon business as usual economics and to rapidly shift to approaches that enhance and reinforce lifestyles and energy consumption behaviors that do not radically alter the world’s environment for the worst.

But, unfortunately, as we will see below, there is more than enough oil, gas, coal, brown coal, fracked oil and gas, gas hydrates, tar sands, kerogen and other fossil fuel stores to continue burning for years, decades and perhaps even centuries to come. So to hope for peak fossil fuel use, unless that peak is determined by responsible individual, community, and political action, is a false hope. An end that sets off terrible consequences. Even worse than those difficult to deal with problems we’ve already locked in.

USGS_-_Bazhenov_Formation_Oil_Reservoir

(The Bazhenov Shale Formation. An Arctic oil and gas reserve now accessible due to US driven technological ‘advancements’ in hydro-fracking. This vast pool of tight oil has 1.2 to 2 trillion barrels of oil in place of which 75 to 330 billion barrels are currently estimated to be recoverable [Depending on who is making the estimation -- US or Russian Government]. It is, perhaps, not a coincidence that these reserves occur in the same region where troubling methane blow-holes first appeared this summer. It is this massive supply of oil that is being directly targeted by the Exxon-Mobile/Rosneft partnership before sanctions this week put the effort on hold. Accessing this massive carbon bomb would lock in billions of additional tons of CO2 release into the atmosphere while, by itself, delaying a global peak in oil production by years to decades. The consequences of burning this massive fuel source are almost certainly far worse than simply leaving it in the ground. Image source: Commons.)

*****

Back in the mid 2000s there was an oil industry energy consultant by the name of Matthew Simmons. And Simmons had developed a laser-like focus on a massive store of ‘easy oil’ in the deserts of Saudi Arabia. This store was locked in the great oil field called Ghawar. A self-pressurized dome that originally contained about 80 billion barrels of the hothouse gas firewater we call oil. Prick Ghawar with a drill and the stuff just came erupting out. Deceptively clear for all the btus of global atmospheric heating it contained.

At some point, the black magic of Ghawar began to fade. Saudi Arabia started to inject water into the Ghawar well to keep the oil flowing. This required more energy and increased costs. For Saudi Arabia and much of the world, the age of easy oil was coming to an end.

Simmons declared that peak oil was just around the corner. That global oil production couldn’t exceed 85 million barrels per day. And that the new, unconventional sources — locked in tight oil deposits and tar sands — were too difficult to extract. Peak oil analysts declared that the Bakken would never exceed a flow rate of 100,000 barrels per day. And the Eagle Ford Shale basin was just a glimmer in the eye of most analysts. Risks for an imminent peak in world oil supply did seem quite high.

Bakken_Reservoir_fields_in_Williston_Basin

(Map of the Bakken tight shale fields in the Williston Basin. The Bakken is estimated to contain 24 billion barrels of oil of which 7.3 billion barrels are currently considered to be technically recoverable. Image source: Commons.)

For some, for conservationists and those who are justifiably very concerned about the impacts of continued fossil fuel based carbon emissions on the world’s climate systems, the notion of an imminent peak in world oil supply came as welcome news. It would force economies to adjust to new structural and environmental realities and it would help to prevent some of the worst impacts of climate change. Certainly, there were still massive volumes of coal and natural gas to consider. But a peak in world oil production would lead to a variety of consumption reductions as well as help to advance renewable energy technology — so long targeted for delay and denial by oil and fossil fuel interests through their wealthy political backers.

For most market analysts and economists, peak oil was never an object. They believed the magic of market economics would always provide a new resource and that the price signal would be enough to produce more resources of different varieties. But these analysts were somewhat blind to the broader impacts of large governmental movements and of investment or failure to invest in new resources by communities, states, and policy-makers.

In many ways, all of these analysts held somewhat correct views. But contained to their narrow focus, they failed to accept where the others were correct or to see their own short-comings. A vocal portion of the peak oil analysts, led by Simmons, retained a narrow, and primarily easy oil and fossil fuel centered world-view that not only denigrated the effectiveness of new oil technology to over-come any peak oil situation, but also blithely dismissed much of the potential for renewables to take up for new energy production. They held a rigid view that only radically reduced consumption (and related implied wide-scale poverty and collapse back to 19th century standards of living) would result from peak oil and that such reduced consumption and collapse was needed and, indeed, would happen whether we liked it or not. Some conservationists seemed to glom on to the notion that renewables were not a desirable solution and this led steam to the anti-renewables faction.

Though the push for lower consumption from peak oilers and conservationists was somewhat helpful, without the renewable option their world-view led to more implied reliance on fossil fuels through active denial of alternatives. And it left the door wide open for new oil related extraction technologies to come charging in absent any wide-spread renewable energy adoption.

The market analysts were labeled ‘cornucopians’ by the more militant peak oilers or related agitators. In fact, this was a term that seemed to include anyone who supported any technology whatsoever, including sustainability based technical solutions. Contrary to peak oilers, the analysts pushed a view that the supply crunch, at first, wouldn’t happen. And, when they were proven wrong, went about cheer-leading for the new fracking technologies and for opening up the unconventional oil basins.

An outside group of progressives pushed hard for new renewable resources. And, given the opening provided by high fuel prices, they were partially successful, despite the constant attacks coming from renewable energy detractors and in spite of a broad front of oil industry advanced extraction technologies competing in the energy investment sector.

Consequent to Simmons’ warnings, a peak in conventional fuels did happen during the period of 2006 to 2008. Prices rocketed and economies were jarred by the shock. A shift toward more renewable energy and efficiency was driven by the crisis. Consumption fell and the world economy stalled in a combined energy and market derivatives crash. But the market signal and increased prices for energy unlocked technology that lead to the rapid expansion of production in Bakken, Eagle Ford, in Canada’s tar sands and in other far-flung basins around the globe.

EIA_Map_of_Eagle_Ford_Shale_Play

(EIA map of the Eagle Ford shale play in South Texas. It’s a basin that extends into North Mexico and contains an estimated 10 billion barrels of recoverable together with trillions of cubic feet of natural gas. Image source: Commons.)

Today, the wretched energy and carbon intensive and highly polluting process that is fracking now squeezes 1 million barrels per day out of the Bakken formation. It wrings 1.7 million barrels per day out of the Eagle Ford formation. Add this staggering production gain to other fracking and conventional extraction efforts across the country and we find that the United States now produces a staggering 13.9 million barrels of liquid fuels per day.

This makes the US the highest volume liquid fuels producer in the world on the back of a terrible breaking of the ground and increasing extraction of a fuel source that is already in the process of wrecking the world’s climate.

Globally, despite struggling production in the Middle East and elsewhere, production of the firewater continued to rise. Canada’s tar sands production spiked to more than 2 million barrels per day with the Arctic state planning for a jump to 5 million barrels per day by 2030. An ongoing carbon bomb explosion that, by itself, could well be described as a tract of human-generated flood basalt.

These and other oil sources combined with enhanced extraction to push global daily oil production from 85 million barrels per day during the mid 2000s to approaching 92 million barrels per day in 2014. This on the back of oil reserves additions in the form of tar sands at 168 billion barrels of extractable oil (total reserve at around 300 billion barrels), Eagle Ford at 10 billion barrels of currently recoverable oil (total reserve at 80 billion barrels), West Texas at 30-75 billion barrels of recoverable oil, Bakken at 7.3 billion barrels of recoverable reserves, and many other regions around the world that are now seeing new oil extraction or enhanced oil extraction.

Permian_Basin

(The Permian Basin of West Texas now containing between 30-75 billion barrels of recoverable oil due to climate-endangering fracking technology. Image source: Commons.)

So Simmons was wrong on the issue of oil peaking at 85 million barrels per day, and many peak oil analysts along with him.

And so it goes with the global fossil fuels story. As of 2014 we burn more oil, gas and coal than we ever have and global peak oil has again been removed to some future date. The global carbon emission is now enough to completely overshoot the lower range IPCC emissions scenarios and we are staring down the face of the highly unpleasant middle and worst case ranges. So in this respect, a number of peak oilers were dreadfully wrong — peak oil did not save us from climate change. In fact, bad effects are now locked in and the debate has shifted to whether or not there is enough extractable oil, gas and coal to hit the worst case scenarios.

But if history doesn’t repeat itself, it does rhyme. For now it appears that both Eagle Ford and Bakken, due to the nature of rapid fracked well depletion, will peak sometime during 2016 and 2020. And the peak oilers are now having a bit of a rally, as challenges to global production, many of them political, are also continuing to expand.

On The Verge of a Voluntary Peak

The environmentalists and scientists, thankfully, appear to be on the verge of successfully putting a crimp on Canada’s tar sands production. The US has sanctioned Russian oil production and a massive set of Arctic and shale reserves many times the US tight shale reserve hangs in the balance (a resource of ultimate reserves on the order of 1.2-2 trillion barrels of oil of oil in place). Barriers to fracking are rising and companies, facing a production glut today and investor uncertainty tomorrow, are in the process of consolidation and retraction.

China is pledging to vastly reduce fossil fuel consumption growth and many oil exporters are beginning to wonder if they’ll have a market for their products there. Around the world, the situation is similar as governments and consumers both push for less use of dirty, dangerous, depleting and costly fossil fuels.

In addition, renewable energy and alternatives have never been more widely available. Solar panel costs are down and EROEI is up. Wind power beats fossil fuel generation in most markets even when considering a natural gas glut due to fracking. Electric vehicles continue to become more widely available and CAFE standards around the world keep rising. An expanding movement is afoot to shift diets to less meat intensive ones — thereby pushing for a reduction in both the land and fossil-fuel use footprint of agriculture. And all these changes aim directly at reducing fossil fuel demand and consumption, generating impetus, along with the political movements targeting both new and old sources for an artificial, voluntary peak in fossil fuel flows.

And this is exactly what we would desire, a direct refusal of business as usual economics. A voluntary taking on of responsible action, economic transition, and behavior change needed to reduce and eventually eliminate an extraordinarily damaging carbon pollution. As has been said, the Stone Age didn’t come to an end for lack of stones. And this could well be the case with fossil fuels, if we actively make that choice. Whether or not it happens essentially depends on people’s perception of the need for it to happen.

Fear of Peak Oil as a Means To Force Continuation of Business as Usual

But the voluntary peak is no-where near a pre-ordained certainty. There is an extraordinarily strong array of political forces aimed at both denying the existence of climate-related harm and doing everything possible to extend business as usual fossil fuel extraction for so long as it is economically and technologically possible. To deny the expansion of renewable energy access and to block access to measures that reduce consumption. To, overall, degrade the political will to respond effectively to a climate crisis that is directly linked to ongoing fossil fuel burning.

And one potential political lever for this forced extension is advancing the fear of peak oil. For if people are wrongly led to believe that peak oil is a worse event than climate change, then it is unlikely people will make the changes necessary to transition away from fossil fuels. They, like the climate change deniers, will cling to fossil fuel extraction in the same way passengers unaware of the existence of life-rafts will cling to the upper tiers of a sinking ship.

How does fear of peak oil work? It’s simple.

First deny, degrade or ignore any potential value to human civilization for renewable energy sources (this is easy for oil industry folks, because they’ve had years of practice advancing anti-renewables misinformation). This includes using energy return on energy invested (EROEI) figures that are outdated or simply false.

eroi_500x220

(In the EROEI battle, renewables win the electricity production race hands down. From top to bottom: light green = hydroelectric, teal = wind, purple = coal, light blue = nat gas, dark green = photovoltaic solar, and dark blue = nuclear. It’s worth noting that solar pv energy return on energy invested continues to rise and is now estimated at 7 according to newer figures. It is also worth noting that the best energy return on investment for individual vehicle transportation comes from an electric vehicle plugged into a renewables fed grid. Image source: Scientific American.)

Second, declare an extreme supply-side ideology in which only fossil fuels have any practical means to fulfill supply needs. In this view, all farming relies on fossil fuels and cannot trade inputs or flexibly change how food is produced to help ensure resiliency (meat to veg, polyculture agriculture, edible landscaping, individually grown gardens, etc). So if fossil fuels peak, access to food is seen to peak as well.

Third, over-emphasize the value of fossil fuels to all levels of civilization with the implied need for fossil fuel related industry to support civilization.

This mind-set is in direct contradiction to the appeal first advanced by Limits to Growth authors for a transition to a sustainable civilization that did not rely on environment-polluting and resource-destroying energy sources as the basis for its prosperity. In fact, it directly obscures the need for such solutions by placing the notion that civilization is only sustainable so long as fossil fuels are available and that civilization inevitably dies without them.

From LTG:

If society’s implicit goals are to exploit nature, enrich the elites, and ignore the long term, then society will develop technologies and markets that destroy the environment, widen the gap between rich and poor, and optimize for short-term gain.

And it is reliance on fossil-fuel based technology that directly reinforces the vicious cycle that Meadows so eloquently describes above.

The final element of the fear peak oil and cling to fossil fuels mind-set is to, at last, deny climate change and, more specifically, to deny that enough fossil fuels remain in the ground to set off climate change that is a threat to human civilization. And it is in this assertion, that they have excessively over-reached and are baldly incorrect (as many who keep tabs here are well aware).

massive carbon reserve

(More and more of a globally estimated 13-20 trillion tons worth of fossil-fuel based carbon are unlocked through advancing extraction technology each year. Is it really a sensible approach to simply wait for such technologies to fail? Image source: IPCC.)

Negative Impacts of Climate Change Now Ongoing, More than Enough Fossil Fuels to Wreck the Climate Many Times Over

So with oil and fossil fuels demand now in trouble due to a broad political and grass-roots response, due to spreading measures that reduce fossil fuel consumption, and due to rapidly expanding ease of access to various renewable energy based technologies, a new Matthew Simmons – type view has emerged.

The view is that Bakken and Eagle Ford are about to peak and with it, North American fossil fuel production will plateau or start falling and that a global peak is in the offing sometime around 2030. As with the Ghawar field focus, the view is likely correct in micro. The fields will probably peak by 2016-2020 and global oil production during the same period will (thankfully) suffer due to a combination of reluctance to invest on the part of oil companies, political constraints that hamper oil flows in Asia and the Middle East, and due to broader conservation measures and alternative energy adoption that begins to put the crimp on world oil demand.

And how we respond to this potential crisis in world oil supply will have far-reaching impacts for both energy and climate going forward. If we see the peak as something we must avoid at all costs, what we will witness is the rapid expansion of fracking in foreign countries to include the exploitation of massive tight fuel resources in Russia and China. We will see the expansion of US oil production through enhanced extraction in the West Texas formation. We will see the barriers to tar sands extraction fall and Canadian tar sands oil rocket to 5 million barrels per day. We’ll see the China syngas operation horrifically expand to an environmental catastrophe to rival that of Canada’s tar sands. And we’ll see the first forays into gas hydrate extraction. We’ll see more coal plants converted to burn brown coal – a massive resource already exploited in conventional coal-poor regions. And we’ll see oil extraction extend into the climatologically violent Arctic.

This expansion will not come without its severe costs. Fossil fuel prices will rise, poverty in many regions will expand. But without some major catastrophic event, net consumption, driven by an ever-expanding fossil fuel and related industry, will continue to increase over at least the next two decades and may well extend beyond 2030 as the massive unconventional resources continue to be tapped. For the political will for reducing such consumption will have been subsumed by fear of peak oil and the alternatives will, again, have been tamped down.

Or, instead, we can embrace peak oil and stop trying to fight off what will inevitably occur over the course of decades or centuries. We can actively decide to change how much and what we consume and we can push hard for renewable energy and broad sustainability measures in agriculture. And through that action we might prevent a portion of the climate catastrophe we have already partly locked in. We can learn not to fear peak oil, but to pursue it, along with the will-full and socially chosen peaking of all fossil fuel sources. We can say goodbye to the age of burning and open a new age where we attempt to deal with the consequences of fossil fuel based industrialism before it’s too late. Before we no longer have the opportunity to.

That’s our choice. But going into it, don’t be comforted with false notions that we don’t have enough carbon sources to wreck the climate. And don’t, for goodness sake, embrace the notion that peak oil is the worst problem we face. Instead, it is a necessary problem. Part of the active and, admittedly, difficult act of changing how we live and of attempting to make human civilization both a more resilient and less harmful beast.

Links:

Bakken Shale Oil Boom

Eagle Ford Crosses 1.5 Million Barrels Per Day in September

US Energy Information Agency’s Short Term Energy Outlook

The Case For a Moratorium on Tar Sands Development

Alberta Energy

West Texas Shale Could Dwarf Eagle Ford

Permian Basin Oil Production

How Many Barrels are in the Bakken?

The Bazhenov Formation

Behind the Numbers on Energy Return on Investment

The Ghawar Oil Field

Limits to Growth

Twilight in the Desert

Hat tip to Pintada (in answer to some of your questions)

 

It’s All About Fresh Water — Rapid Sea Level Rise Points To Massive Glacial Melt in Antarctica

It’s all about fresh water. In this case, massive freshwater outflows from the vast glaciers covering Antarctica.

This week, a new scientific report published in the Journal Nature found that from 1992 through 2012 freshwater outflow from Antarctica’s massive glaciers exceeded 400 gigatons each year. An immense flood of cold, fresh water. One that helped push sea levels rapidly higher around the Antarctic continent.

But with glacial melt on the rise and with mountains of ice now inexorably sliding seaward, these freshwater flows may just be the start of even more powerful outbursts to come. And such prospective future events have far-ranging implications for sea level rise, global weather, sea ice, human-caused climate change, and world ocean health.

Flood of Fresh Water Drives More Sea Level Rise Than Expected

The researchers discovered the tell-tale signature of this vast freshwater flood through chemical analysis of the seas surrounding Antarctica. The analysis pointed to a broad and expanding fresh water layer over-riding a warmer, saltier current issuing in from the Southern Ocean.

Since fresh water is less dense than salt water, the freshwater layer expands at the ocean surface causing sea levels to rise more rapidly. Meanwhile, the heating of the deep ocean surrounding Antarctica is thought to result in additional thermal expansion of the water column.

The researchers note:

On the basis of the model simulations, we conclude that this sea-level rise is almost entirely related to steric adjustment [changes that effect atomic spacing], rather than changes in local ocean mass, with a halosteric [salt based] rise in the upper ocean and thermosteric [heat based] contributions at depth. We estimate that an excess freshwater input of 430 ± 230 Gt yr−1 is required to explain the observed sea-level rise. We conclude that accelerating discharge from the Antarctic Ice Sheet has had a pronounced and widespread impact on the adjacent subpolar seas over the past two decades.

Antarctic Sea level Trend

(Rate of sea level rise in the seas surrounding Antarctica since 1992. Aggregate sea level rise is indicated in black. Individual seas data is broken out by color. Image source: Nature.)

Previously, increased rates of sea level rise surrounding Antarctica were thought to have been set off by increasing winds around the continent. The winds were thought to push more water up against the ice faces forming a kind of perpetual, low-grade storm surge. But the current finding provides strong evidence that the source of the sea level rise is due to less dense fresh water over-topping saltier waters flowing in from the Southern Ocean combined with increasing heat along the Antarctic sea bed. And, notably, this is not the first study to find increasing freshwater flows spilling into the Southern Ocean. Last year, a KNMI expedition uncovered similar results.

More Evidence of Large-Scale Melt

The study comes on the back of other recent findings showing that warm water invasion at Antarctic glacier bases had led to more rapid than expected melt and destabilization. In May, two NASA studies showed that a broad section of West Antarctica had destabilized and was sliding at an ever more rapid pace toward the ocean (see reports here and here). These findings held stark implications for global sea level rise as large ice regions of Greenland and West Antarctica, containing enough water to raise seas at least 15 feet, are likely already in a state of irreversible collapse.

 

Regional Anomaly Sea level Antarctic

(Sea level rise anomaly of the region surrounding Antarctica compared with the rest of the Southern Ocean. Red indicates faster than normal sea level rise. Blue indicates slower than normal sea level rise. Image source: Nature.)

This intensifying glacial melt and associated freshwater cap expanding out from the pole has implications — not just for sea level rise, but for sea ice, weather, and world ocean system health.

Impacts For Sea Ice

Large outflows of glacial fresh water may well be involved in the recent observed expansion of sea ice in the zone surrounding Antarctica (see recent related study). Fresh water serves as an insulative cap on the ocean surface preventing warm water from entering the top layer from below. The warm, salty water, in the Antarctic instead pools near the bottom or at the base of the great ice sheets.

Fresh water also freezes at a higher temperature than salt water. So sea ice in an expanding freshwater zone around Antarctica would have naturally higher resiliency even to the rising temperatures now occurring due to human-caused warming. Eventually, however, human heat forcing would overwhelm the ice, but not before a period of related, localized negative feedbacks.

The Iceberg Cooling Effect

The fresh water is a haven for sunlight-reflecting sea ice. It is interspersed with ice bergs from the glacial discharge and the large ice bergs cool the surrounding air. The fresh water layer prevents warm water upwelling from the warm, deep waters surrounding Antarctica. And the leading edge of the fresh water would drive salt-water down-welling along its advancing front. This would push warmer waters toward the ocean bottom, resulting in a kind of heat sink. And this is exactly the kind of dynamic that appears to be ongoing in the Southern Ocean now. These combined impacts are what is known as the ice berg cooling effect associated with large-scale glacial outbursts known as Heinrich Events. And we may well be in the process of setting off one of these geological scale nightmares.

20121230_iceberg_cooling_effect_Hansen_Sato

(Iceberg cooling effect under a mid-range warming scenario when global climate models were set to include the effects of large freshwater outflows from polar glaciers at a fast enough rate to raise seas by 60 cm through 2060 and 144 cm through 2080 [left frames]. Note the cooler zones in the Southern Ocean and North Atlantic adjacent to Greenland. Right frames include mid range emissions/warming scenarios and IPCC projected rates of sea level rise. It is worth noting that the amplifying effects of potential additional ghg release from the global climate system, particularly from Arctic and world ocean carbon stores, are not included in these simulations. Image source: Hansen and Sato.)

For global weather, such events have major implications. Regional cooling in the zone of freshwater outflow would juxtapose regional warming in the southern hemisphere meridional zones. This temperature differential would increase with the strength of the fresh water outflow and the rising intensity of the human-driven warming. The result would be a powerfully intensified storm track. Both the intensified storm track and increased atmospheric moisture loading due to human warming would result in much more powerful weather events than we are currently used to and the potential for catastrophic storms would drastically increase.

Amplifying Feedbacks and a Blow to World Ocean Health

Lastly, the expanding flood of fresh water would result in an increasing stratification of the world ocean system. This stratification would drive warm, salty water toward the ocean bottom and deplete already low oxygen reserves in that region. In addition, the extra heat is more likely to destabilize deep-sea clathrates — releasing methane which will speed in the oxygen depletion of the abyssal waters even as it tips the world ocean system to stop storing carbon and to begin releasing it. A combined feedback that is both an ocean killer and an amplifier to the already extraordinarily powerful human heat forcing mechanism.

Links:

Rapid Sea Level Rise Along Antarctic Margins Due to Increasing Glacial Discharge

Important Role For Ocean Warming and Enhanced Ice Shelf Melt in Sea Ice Expansion

Update on Greenland Ice Sheet Mass Loss: Exponential?

Grim News From NASA: West Antarctica’s Entire Flank is Collapsing

Nature: Human-Destabilized Antarctica Capable of Glacial Outbursts Contributing to Up to 14 Feet of Sea Level Rise Per Century

 

No More ‘Hiatus’ — Human Emission to Completely Overwhelm Nature by 2030

Keep burning fossil fuels at current rates and you can kiss nature’s influence over temperature good-bye. That’s the conclusion of two recent scientific studies.

*****

Humans are forcing heat trapping substances into the atmosphere at a terrifying pace. We pump out more than 10 billion tons of carbon on the back of about 50 billion tons of CO2 equivalent hothouse gasses into the atmosphere each year. This massive volume is the upshot of an inexorably rising emission starting during the 19th century and continuing to this day. By the end of this century, rates of burning could again increase nearly threefold.

The current, rampant pace of human emission is now at least six times faster than at any time during Earth’s geological past. But on our current path, that rate could exceed 20 times that seen during any of the previous worst hothouse extinction events.

Emission scenarios

(Current rate of annual carbon emissions in gigatons [black dots] compared to IPCC projected scenarios. Note that current human emissions are on the worst case emissions path. Image source: Global Carbon Project.)

This incredible rate of emission was the key factor in two new studies issued this week investigating the possibility of future hiatuses or ‘pauses’ in global warming due to nature-driven variability (see the studies here and here). And what the studies found was that rampant human burning of fossil fuels removed any possibility for hiatus decades driven by natural variability after 2030.

In essence, we are in the process of shutting down nature’s temperature-related influence entirely.

Understanding Natural Cycling Between Warm and Cool Periods

Natural shifts between atmospheric warm and cool spells appear to be primarily driven by how much heat the oceans uptake or expel.

In the Pacific, this rate of heat uptake is driven by the strength or weakness of the trade winds driving across the equator. During periods in which the trade winds are strong, a great volume of air contacts the surface water and more atmospheric heat is driven into the ocean through down-welling. During periods in which the trade winds are weak, the atmosphere-to-ocean heat transfer shuts down even as warmer waters rise from the depths and spread out across the ocean surface. During these times, the ocean is dumping heat back into the atmosphere.

A similar process happens in the Atlantic where salty, warm surface water down-welling transfers atmospheric heat toward the deep ocean. When that process shuts down, more heat piles up at the ocean surface and bleeds back into the atmosphere.

The first of these processes is called Interdecadal Pacific Oscillation (IPO — which is related to ENSO variations) and is thought to be the primary governor of this global natural variability. The second process, Atlantic Multidecadal Oscillation (AMO), is thought to be the lesser of the two forces.

Past Variability in the Global Temperature Record

Even with large-scale human warming proceeding throughout the 20th Century and into the 21st Century, we can see the effects of this natural variability on the global temperature record. During naturally driven warmer periods human-caused warming advances rapidly. During two of the naturally driven cool periods, human forced warming has a set-back, and, during the third, only seems to briefly slow down.

Temps since 1880

(Global temperature record as compiled by NASA. Note how warming has traditionally proceeded in a step-like fashion. Image source: NASA GISS.)

Taking a closer look, we find that the time from 1880 to 1910 saw global surface temperatures falling by 0.2 degrees Celsius as ocean heat uptake increased and IPO went negative. From 1910 to 1940, the IPO driver switched into positive. As the oceans disgorged their heat, the first effects of human greenhouse gas heat forcing became evident as global temperatures jumped by 0.45 degrees Celsius over a 30 year period. From 1945 to 1975, IPO again switched into negative, but this time human forcing was in the driver’s seat and temperatures only fell by around 0.06 degrees Celsius. By 1975, temperatures were again on the rise and through 2002, the heat spike rocketed fully 0.6 degrees C upward.

From about 2002 onward, we enter the current ‘hiatus’ period in which atmospheric warming, during a time when we should have seen cooling, has proceeded slowly despite major natural variability factors pushing for cooler atmospheres and warmer oceans.

Reducing Impacts of Natural Variability

The term ‘global warming hiatus,’ however inaccurate, is a new invention. Its use first cropped up over the past couple of years as human greenhouse gas forced warming seemed to slow somewhat from its rampant upward pace through the 1980s and 1990s. This brief pause in atmospheric warming caused some global warming skeptics to declare an end to human-caused heating. An extraordinary claim in the face of highest ever heat-trapping gas emissions.

But what was really happening was that natural variability, which should have been driving the Earth’s atmosphere to cool, was starting to take a back seat.

For two recent studies, mentioned above, found that natural variability driven temperature change has radically fallen even since the 1980s.

The first study, headed by Masahiro Wantanabe, found that, during the 1980s natural variability was responsible for about 47 percent of the observed global temperature change. By the 1990s, this number had fallen to 37 percent. And as an IPO driven switch should have led to cooler temperatures during the 2000s, Wantanabe finds that the effect of natural variability had again plunged to 27 percent.

The cause for the loss of the temperature driving effect of natural variability, according to global climate model runs, is a stunning rate of human greenhouse gas increase. And a related study led by Nicola Maher found that if greenhouse gas emissions by humans kept rising at ever more rapid rates, the natural variability measure is completely overwhelmed by 2030:

The likelihood of future hiatus periods is found to be sensitive to the rate of change of anthropogenic forcing. Under high rates of greenhouse gas emissions there is little chance of a hiatus decade occurring beyond 2030, even in the event of a large volcanic eruption.

Under the worst case emissions scenario — RCP 8.5 — natural variability is completely subsumed by human warming by 2030. Continuing on this track through 2100 means that the human forcing is so strong that even a volcanic eruption on the scale of Krakatau would not be enough to generate a warming hiatus.

For those considering use of solar radiation mitigation through aerosol inject, this point is a very important one to consider. It is a basis for proof that such mitigation eventually radically fails to reduce greenhouse gas heating effects if levels of emissions are not also drawn down.

Sadly, we are currently on the RCP 8.5 track. But, according to the studies, if humans could somehow rapidly reduce greenhouse gas emissions, the effect of natural variability on climate would be at least somewhat preserved.

Human-Forced Variability

The discussion of natural variability does not include instances in which human heat forcing produces outcomes outside of natural variability. The most obvious of these would be a large glacial outburst event in which enough water is released from Greenland and West Antarctica to raise seas by 1 meter or more this century. Such an event would have a temporary cooling effect that could result in an unnatural hiatus in warming. Such a human-forced variability was not considered in these global climate model studies, but it is worth considering as the strength of the now rampant human heat forcing continues to increase.

Links:

Global Carbon Project

NASA GISS

Contribution of Natural Variability To Global Warming Acceleration and Hiatus

Drivers of Decadal Hiatus in 20th and 21st Centuries

No More Pause — Global Warming Non-Stop From Now On

Hat Tip to Colorado Bob

 

World Ocean Temps Spike to +1.26 Positive Anomaly as Antarctic Polar Amplification Ramps Up

Prospects for a moderate to strong El Nino are fading even as the eventual emergence of El Nino this year grows increasingly in doubt. But despite the failure of a weather system which tends to both spike global sea surface temperatures and atmospheric temperature values, the world’s oceans are screaming with heat, today entering hottest yet daily values for 2014 of 1.26 degrees above the already hotter than normal 1979-2000 average.

*****

The monster Kelvin Wave that so many forecasters believed would set off a moderate-to-powerful El Nino this year by as soon as this summer was crushed by a failure of atmospheric feedbacks. Strong westerly winds did not emerge and powerful high pressure systems both north and south of the Equator kept fueling the easterly trades, which tended to over-ride west wind systems when they did emerge. One of these high pressure zones was the doggedly persistent blocking high sitting off the US West Coast and contributing to the worst drought conditions in a century for California.

The Kelvin Wave was strong enough, however, to set off conditions in which May and June of 2014 were the hottest in the global record and in which ocean surface temperatures during July were also the hottest in the 135 year global record.

During that time, June saw global daily ocean temperature anomalies spike to as high as +1.25 C above the already hotter than normal 1979 to 2000 average in the GFS measure. Today, despite equatorial Pacific Ocean temperatures backing off from June highs, global sea surface temperatures spiked to an extraordinary +1.26 positive anomaly, beating out a time when a very energetic Kelvin wave was dumping a high level of heat into the Equatorial Pacific surface zone.

Sea Surface Temperature Anomaly global August 29, 2014

(Global Sea Surface Temperature Anomaly as of August 29th of 2014. Image source: University of Maine.)

These are extraordinary high sea surface temperatures. And they are likely a continuation of a trend, now four months running, in which the global ocean surface was at or near record highs.

Globally, the hottest areas continued to include a very warm zone off the US West Coast, a zone of +3 to +4 C positive anomaly values in the Bering Sea and behind the arch of the Aleutian Islands between Alaska and Russia, and a zone of much warmer than normal waters from Maine to Greenland to Iceland and Svalbard.

Austral Polar Amplification Heats Up

Even as global ocean surface temperatures shot to record or near record high daily values, Antarctica was undergoing its own major warm-up.

Human greenhouse gasses, more efficient at trapping heat during the long polar night that is winter, and at record warming values in the range of 481 CO2e appeared to be doing their work. For yesterday, temperature anomalies for all of Antarctica spiked to above +3 degree Celsius positive anomaly. Though not as high as the +5 C and greater anomalies observed for the Arctic during the winter of extreme polar vortex disruption that was 2013-2014, the Antarctic heat spike is still quite high. This is especially true for a region that has seen an expanding pulse of cooling fresh water from glacial melt together with strong down-welling and atmosphere to waters heat transfer in the Southern Ocean.

Antarctic Polar Amplification

(Antarctic heat anomaly of +2.94 C above the already warmer than normal 1979 to 2000 average on August 29, 2014. Image source: University of Maine.)

As of today, Antarctic heat anomalies were still in the very well above average range at +2.94 C. Most of the excess heat centered over the now destabilized and seaward spreading glaciers of West Antarctica which experienced extraordinary temperatures in the range of 15 to 20 degrees Celsius above average.

This much warmer than normal pool of air spilled above average warmth in all directions. And were it not for the expanding fresh water wedge, salt water downwelling, and strong winds driving a powerful atmosphere to ocean heat transfer in the Southern Ocean, the overall Antarctic temperature anomaly values would be even higher.

Overall, global surface temperatures were at +0.71 C above the 1979 to 2000 average in the global GFS measure today. And with August remaining far warmer than average for most the month, it appears likely that we will have another record or near record warm month. It is almost certain that ocean values with be at record levels and atmospheric values are not too far behind. All this potential for new record heat despite El Nino failing to form and increasingly in doubt.

New Kelvin Wave Not So Strong As the Last

To this point it is worth noting that a new warm Kelvin Wave is now propagating across the Pacific. The current wave is not anywhere near as strong as the event which occurred during winter and spring of 2014. Despite the failure of that Kelvin Wave and the weaker stake of the current wave, NOAA is still predicting a 65% percent chance of El Nino before the end of 2014. This is a lower potential than the 75 to 80 percent prediction from earlier this year and even if El Nino does emerge, consensus models now show a rather feeble iteration peaking at around +0.6 C for mid ocean temperature anomalies.

Kelvin Wave August 21

(Most recent Kelvin Wave as detected by NOAA. Image source: NOAA’s Climate Prediction Center)

Regardless, even if El Nino doesn’t form it appears that 2014 is well on its way to being one of the hotter years in the global record, continuing a long trend of inexorable surface warming.

Links:

University of Maine

NOAA’s Climate Prediction Center

July 2014 Shows Hottest Ocean Surface Temperature on Record

Leaked UN Report Shows Failure to Swiftly Act on Climate Change Results in Catastrophic Harm

Over the past week, various sources have leaked information passed on to them by the UN’s Intergovernmental Panel on Climate Change (IPCC). The reports highlighted stark consequences for continued failure by policy makers to act, providing a general view of rapidly approaching a terrible and very difficult to navigate global crisis.

Dancing on the Edge of a Global Food Crisis

The first weak link for human resiliency to climate change may well be in our ability to continue to supply food to over 7 billion people as weather and sea level rise takes down previously productive agricultural regions. And the leaked UN report hints at a currently stark global food situation in the face of a risk for rising crisis.

For the Mekong Delta, as with more and more agricultural regions around the world, by August of 2014, global warming was already a rampant crop killer.

The Vietnamese government this year made efforts to stem the effects of warming-driven sea level rise and saltwater invasion as 700,000 hectares of rice paddy farmland in one of the world’s most productive regions came under threat. But the efforts have not entirely prevented intrusion and many plants show the tell-tale yellowed leaves that result from salt water leeching into the low-lying freshwater fields that have, for so long, yielded a bounty of grain. Many farmers are now facing losses of up to 50% for crops that used to produce like clockwork year-in, year out. This year, the salt water has intruded as far as 40 to 50 kilometers inland, delivering a substantial blow to the region’s agriculture. But the potential effects, given even the IPCC’s conservative projections of sea level rise in the range of 29 to 82 more centimeters this century, are stark for this and other low-lying agricultural regions.

FAO index August 2014

(UN FAO food price index since 1961. Note the spike since the mid 2000s coinciding with energy price increases and ramping crop destruction due to climate change. The first price spike during 2008 was primarily energy price related, but the second spike during 2011 coincided with a string of some of the worst spates of crop-destroying weather on record. Note that prices remained historically high following the 2011 spike, an indication that global agriculture was having difficulty meeting increased demand, despite the price signal. Image source: FAO.)

Around the world, tales from agricultural zones are much the same — ever-increasing challenges due to climate change driven droughts, floods, fires, spreading diseases, invasive species, and sea level rise. Since mid 2010, these added stresses have driven the United Nation’s FAO food price index — an indicator for global food security — above 200 for four years running. Historically, international insecurity and food-related unrest have sparked when prices hit and maintain above 208. And though the price of food has fallen somewhat from highs nearing 230 during 2011 to a range near 204 during 2014, the ongoing and worsening impacts of climate change mean that new and starker challenges to feeding the world’s 7 billion and growing population are just over the horizon.

Instances of food riots correlated with food price

(Instances of food riots from 2004 to late 2012 correlated with global food prices. Image source: ABC.)

These climate change related impacts are ongoing and, according to recent scientific reports, have resulted in a 3-5 percent loss of annual grain production for maize and wheat and could result in 10 percent total losses in grain production through the early 2020s. But even if agricultural difficulties are somehow delayed through the next decade, the UN report shows climate change eventually winning out by compounding damages that cause:

“slow down [of] economic growth, make poverty reduction more difficult, further erode food security, and prolong existing poverty traps and create new ones, the latter particularly in urban areas and emerging hot spots of hunger.”

Wide-ranging and Terrible Impacts

Of course, damages from climate change aren’t just limited to crops. More extreme weather, vicious heatwaves, rising seas, ocean acidification and anoxia, loss of glacial and ocean ice, rampant wildfires and other jarring impacts are likely to coincide as warming continues to spike higher.

At 0.85 degrees Celsius and 1.5 degrees Fahrenheit warming since 1880, we already see some rather radical impacts. But, according to IPCC, these impacts are likely to seem paltry if human business as usual emissions continue and hit the IPCC projected level of warming by 5.4 C or 9 F by the end of the 21st Century.

For illustration, IPCC provides the following impacts/risk graph:

IPCC Level of Risk

(Projected risk related to a given level of warming according to IPCC via Bloomberg.)

As a risk-related graph, the analytical function is notably vague. The graph defines risks to unique systems (primarily natural ecosystems or human systems such as agriculture and tourism related to those systems), risks associated with extreme weather (which is self-explanatory), risks associated with distribution of impacts (which generally defines how widespread climate impacts will become), risks associated with global aggregate impacts (this attempts to define the level of net positive or net negative impact, with some positive impacts resulting in an almost neutral net impact early on but overall and increasingly severe net negative aggregate impacts going forward), and risks associated with singular large-scale events (related to catastrophic weather or Earth changes such as glacial outburst floods, methane release, slope collapse and other unforeseen catastrophic, large-scale instances).

For +0.85 C warming above 1880s levels, we can add an imaginary line at +0.25 C above the 1986 to 2005 level. There we find current changes that are now visible and ongoing and that, to us, seem pretty substantial. Along that line, we see risks to some threatened systems from climate change (ramping damage to reefs, agriculture, rainforests etc), a moderate risk of extreme weather events outside the 20th Century norm (and we see these with increasing frequency), we are edging into increasing risks of disruption in some regions (as we’ve seen in Syria, the US Southwest and a shot-gun of other areas), we are edging into a zone where most people are starting to see impacts (though these are still comparatively minor for many, but increasingly bad for a growing minority), and we are at low but rising risk of catastrophic events (major glacial outburst floods, methane release, continent spanning megastorms etc).

And given this context, we can see how much worse things will be with just another 0.25, 0.75, or 1.5 C of warming. By the end of this century, under business as usual, we are at the top of the risk graph and would be witnessing events that many of us would now consider both strange and terrifying.

IPCC researchers add the following chilling and entirely apt caveat (Bloomberg):

“Many aspects of climate change and associated impacts will continue for centuries, even if anthropogenic emissions of greenhouse gases cease,” the researchers said. “The risk of abrupt and irreversible change increases as the magnitude of the warming increases.”

To this point, I would like to add that some changes are now irreversible, but the worst impacts are not, as yet, unavoidable.

The Terrifying Rate of Human Emission

IPCC now recognizes that human greenhouse gas emissions are at or near worst case levels. Current global volume of all human greenhouse gas emissions is now likely in excess of 50 gigatons of CO2 equivalent (CO2e) each year. As of the latest IPCC assessment, the emission stood at 49 gigatons CO2e for greenhouse gasses each year by 2010 (more than 13 gigatons carbon). This rate of emission, if continued and/or increased through the end of this century, is enough to trigger Permian Extinction event type conditions over the course of just three centuries or less (the Permian Extinction took tens of thousands of years to elapse) a shock that is unprecedented on geological time-scales.

Global Greenhouse Gas Emission Levels 1970 through 2010

(Global greenhouse gas emissions from 1970 through 2010. Included are human emissions from CO2 through fossil fuel burning, CO2 through land use, Methane emissions, N2O emissions, and fluoride gas emissions. Image source IPCC via Bloomberg.)

This immense volume of emission is probably more than 6-10 times faster than at any period of the geological record. Its vast and violent outburst is worse than any of the great flood basalts of Earth’s long history. And its pace of out-gassing will rapidly overwhelm any of Earth’s carbon sinks, likely turning many of these into sources. The human greenhouse gas emission is, therefore, likely on track to be the worst greenhouse gas disaster the Earth system has ever experienced.

Rapid Mitigation is the Only Moral Option

To this point, IPCC recommends rapid mitigation to prevent the worst possible consequences.

“Risks from mitigation can be substantial, but they do not involve the same possibility of severe, widespread, and irreversible impacts as risks from climate change, increasing the benefits from near-term mitigation action,” the authors wrote.

IPCC finds that the cost of mitigation is low so long as policies aim to rapidly reduce energy consumption, rapidly affix existing carbon emitting infrastructure with carbon capture and storage, leave new and unconventional fossil fuel sources in the ground while allowing existing sources to go into decline or be replaced outright by alternative energy, keep current nuclear capacity running until the end of its life expectancy, and provide all replacements and new additions for energy generation through various renewable energy sources (my personal opinion about the carbon capture policy position is that it creates moral hazard by giving the fossil fuel interests wiggle room, but that discussion is for another post).

IPCC model runs show a stark difference between business as usual fossil fuel emission based warming and warming by end century under rapid mitigation:

Warming Scenarios Rapid Mitigation vs Businesss as Usual

(Approximate 1.9 C warming by 2100 under rapid mitigation vs 5.4 C warming under business as usual. Note that potential substantial Arctic and marine carbon store feedbacks are likely not fully taken into account and may require additional mitigation to alleviate. Source: IPCC via ThinkProgress.)

The approximate 3.5 C difference between the rapid mitigation scenario and the business as usual scenario is a glaring contrast between a world in which humans can cope with and reduce the long term impacts of difficult to deal with climate change and a world in which climate change essentially wrecks all future prospects. Between these two choices, there is only one moral and, indeed, sane option.

Overall, the most recent IPCC report is likely to receive broad criticism from climate change deniers for its more direct language. And this is probably a good sign that it is on the right track. In my view, however, the report is still cautious and leaves out a number of key risks, including significant amplifying feedbacks from Arctic carbon stores and other carbon stores, or simply deals with them by implication without further analysis (such as through the use of the term ‘large-scale singular events’ in the graph above). So, in some ways, the report hides actual risks behind obtuse language and dense scientific terminology.

Given the current behavior and mindset of policy-makers, an even more direct approach may well be necessary. That said, the current IPCC report, as alluded to by these leaks, appears to be a far more impactful summation than its previous iterations. Given the very narrow window in which we have to prevent the most severe future harm, such a shift is appreciated and highly appropriate.

Links:

Climate Scientists Spell Out Stark Danger and Immorality of Inaction in New Leaked Report

Climate Trends and Global Crop Production Since 1980

Irreversible Damage From Climate Change

UN Draft Report Lists Unchecked Emissions Risks 

Climate Change Impacts to Mekong Delta

Rising Sea Level Means Trouble For Vietnam’s Rice Farmers

FAO World Food Price Index

Hat Tip to TDGS

Methane Monster’s Grumbling Goes Global: 570 Methane Plumes Discovered on Atlantic Ocean Sea Floor

Greenhouse gas concentrations spike — heating the atmosphere and the deep ocean after a period of glaciation during which vast stores of carbon accumulated. Massive volumes of this carbon lay dormant — trapped in frozen ground and in clathrates on the sea bed. As the ocean and airs warm, these carbon stores release causing a massive spike of additional greenhouse gasses to hit the atmosphere and setting off ever-more-rampant heating. The cycle continues until much of these carbon stores out-gas, pushing the Earth into a hothouse state.

Sound chillingly familiar?

What I’ve just described is the process that most scientists believe occurred during the worst mass extinction event in the geological past — the Permian Extinction. A hothouse event that killed 95% of life in the oceans and 70% of life on land. And what humans are now doing to the Earth’s airs and waters through CO2 and related greenhouse gas emissions may well be shockingly similar.

Large methane release over East Siberian Sea August 2014

(Substantial methane release from the East Siberian Sea surface during early August likely in the range of 0.5 to 1 megatons points toward both atmospheric methane overburden and likely carbon store instability and large scale out-gassing in the Arctic. Image credit: Sam Carana and NOAA.)

From the Arctic tundra to the Arctic Ocean sea bed to the Atlantic Ocean, we have growing evidence of methane and CO2 releases from carbon stores that may well be at the start of just such a large scale feedback. Time and time again, we see evidence of significant (but not yet catastrophic) emissions from Arctic methane stores (see image above). With each passing year, the methane overburden in the Arctic air grows. And we have had increasing evidence of a growing volume of releases from the East Siberian Arctic Shelf sea bed, to the methane emitting melt lakes proliferating over the thawing permafrost, to the chilling and terrifying methane blow holes discovered this year in Siberia.

As of 2011, many Arctic scientists believed that human-caused heating could set off methane and CO2 emissions from that region equivalent to between 10 and 35 percent or more of current human fossil fuel burning by the end of this century. The lower boundary of this range is with rapid reductions in human greenhouse gas emissions, the upper boundary is under business as usual. Such a 35 percent equivalent emission, happening year on year for centuries, would be more than enough to push Earth into a runaway hothouse scenario without any further human greenhouse gas releases. And it is this scenario, or the even more chilling worse case of very rapidly ramping Arctic methane outbursts, that we should be very concerned about.

Atlantic Methane Hydrate Destabilization off US East Coast

Unfortunately, the vast carbon store in the Arctic is not the only potential source of heating feedback carbon release. For around the world, upon and beneath the ocean sea bed, billions of tons of methane lay stored in clathrate structures. These stores are separate from the large carbon deposits in the Arctic. But they are no less dangerous.

In 2012, Nature issued a study that found a store of clathrates composing billions of tons of methane was now destabilizing off the US East Coast. The study predicted large-scale releases in the multi-gigaton range from the southern region of the East Coast methane clathrate store due both to changes in the Gulf Stream circulation and to warming bottom waters — both impacts set off by human-caused climate change. The study was uncertain how fast such a release could occur, but noted that the eventual release was likely due to wide-scale clathrate degradation associated with ocean bottom warming.

Methane Seep off US East Coast

(Methane Seep off US East Coast. Image source: Nature.)

This year, research vessels returned to the region and found 570 plumes of methane venting from destabilized clathrate stores there. This result was surprising due to the fact that only three methane seep sources had previously been identified. The plumes were discovered in 50 to 1,500 meters of water, with most of the seeps occurring at between 250 and 600 meters depth, along a zone stretching from Cape Hatteras to Georges Bank. The seeps ranged in age from recent to 100 or even 1000 or more years old. Overall, the prevalence of seeps was more widespread than expected.

“This is the first time anyone has systematically mapped an entire margin,” Christian Berndt, a marine geophysicist at GEOMAR in Kiel, Germany, who was not involved in the study, said in an interview to Science Magazine. “They found that there was much more methane coming out than was suspected beforehand.”

Currently, only a small amount of the methane being released from the sea bed off the US East Coast is likely hitting the atmosphere and is probably not contributing anywhere near the volume of known emission sources from the East Siberian Arctic Shelf. Most of the gas is just absorbed by the water column, increasing acidification in the region and contributing to anoxia. But the known clathrate store off the US East Coast is very significant and large scale releases could result in much more widespread anoxia, acidification, and provide a substantial atmospheric heating feedback to human-caused warming. Very large and catastrophic outbursts could also result in slope collapse and generate tsunamis along the US East Coast. A concern that researchers may also need to further investigate.

Overall, as much as 300 to 400 gigatons of methane could be at risk and even a fraction of this store hitting the atmosphere would cause serious and lasting harm.

Overall, it is estimated that at least 30,000 methane seeps like the ones recently discovered off the US East Coast may now be active with potentially 10,000 in the East Coast region now under investigation. The current study provides a good base line for further exploration of what may well be a rather significant problem going forward.

“It highlights a really key area where we can test some of the more radical hypotheses about climate change,” said John Kessler, a professor at the University of Rochester, in an interview with the New York Times. “How will those release rates accelerate as bottom temperature warms?”

The acceleration would indeed have to be substantial to add to the already significant and troubling Arctic methane and CO2 release. But the sea bed stores are vast and the rate of human warming is very rapid. So the global ocean clathrate store is something to keep under close watch and the discovery of yet one more source that is already emitting at faster than expected rates is not at all comforting.

Links:

Widespread Methane Leakage From Sea Floor on Northern US Atlantic Margin

From Glaciation to Hothouse — Why the Permian Extinction is Pertinent to Human Warming

Recent Changes to the Gulf Stream Causing Widespread Hydrate Gas Destabilization

New Study Shows East Coast Hydrates Destabilizing

High Risk of Permafrost Thaw

Sam Carana

NOAA

Scientists Discover Hundreds of Methane Leaks Bubbling Up From the Atlantic Sea Floor

Sea Level Rise Found to Cause Slope Collapse, Tsunamis, Methane Release

Greenland’s Late August Rain Over Melt Ponds is a Glacial Outburst Flood Hazard

Glacial melt ponding on steep ice faces. Above freezing temperatures for an extended period. Storms delivering rainfall to the glacier surface.

These three events are a bad combination and one that, until recently, we’ve never seen before for Greenland. It is a set of circumstances directly arising from a human-driven warming of the great ice sheet. And it is one that risks a highly violent and energetic event in which melt ponds over-top and glaciers are flushed and ripped apart by surges of water rushing for scores of miles over and through the ice sheet. Major melt pulse events called glacier outburst floods that can result in catastrophically large volumes of water and broken ice chunks issuing from the towering, melting glaciers of Greenland and Antarctica.

It’s a risk we face now, as the circumstances driving the risk of such an event are present today.

Rain over Ice on August 21, 2014

Over the past four days a high amplitude wave in the Jet Stream and coordinate domes of high pressure over Greenland have delivered well above average temperatures for the great Northern Hemisphere ice sheet. Near and just to the east of the Jakobshavn glacier on the West Coast of Greenland, temperatures have ranged between 5 and 10 degrees Celsius above average.

Greenland Temperatures August 21Rain over Greenland Melt Ponds on August 21, 2014

(GFS temperature and rainfall analysis for Greenland on August 21, 2014. Note the above freezing temperatures and rainfall over the region of the Jacobshavn Glacier for today. Image source: University of Maine’s Climate Reanalyzer.)

What this means is a persistence of average temperatures in the range of 34-40 degrees (F) over large sections of Greenland’s Jakobshavn glacier. Melt level readings over a region that has now experienced ongoing surface ponding for more than 60 days.

But these warm temperatures, providing yet more heat forcing to melt the ice, aren’t the only extreme weather factor for the Jakobshavn glacier today. For today has brought with it a warm, wet over-riding airmass emerging from Baffin Bay and the Atlantic Ocean to the south. The warm air, coming into contact with the cooler glacier air is condensing and disgorging a series of rainstorms, dumping above-freezing water into the Jakobshavn’s already swelling pools.

Some of these effects are directly visible in the LANCE MODIS satellite imagery provided by NASA.

Glacial melt ponds are indicated in the satellite shot below by light-to-dark blue splotches on the glacier surface. Shallow surface melt ponding and pooling is indicated by a thin skein of light blue. In the left frame below, you can see the extensive and large melt ponds in the region of the Jakobshavn Glacier on August 18, 2014. For reference, the largest of these ponds are between 2 and 4 kilometers across. Also note the pale blue color of the ice near the larger ponds, indicating extensive smaller ponds in the region.

In the right frame, we have today’s LANCE-MODIS satellite shot. You will note that the entire frame is covered by cloud but that you can still see the blue undertone of the melting glacier below the rain-bearing clouds.

Melt Ponds, Jakobshavn August 18Rain over Melt Ponds

(LANCE MODIS satellite shot of the Jakobshavn Glacier on August 18 [left frame] and August 20 [right frame]. Note the widespread melt ponds and blue ice indicating smaller ponds over the glacier structure. Image source: LANCE MODIS.)

Assessing Glacial Outburst Flood Risk

Some day, as Greenland continues to warm under the human heat forcing and as more hot air invasions ride up over the ice sheet, a period of warmth followed by rainstorms may well set off a major outburst flood event. The water content in melt ponds over the glacier may well be far greater than what we see now and a series of over topping events, starting higher on the ice sheet and magnifying toward the ice sheet base, would set of a chain of events leading to such a flood.

Risks for this kind of event today may well be moderate to low. The glaciers at this point are craggy and much of the flood waters shunt through holes in the ice to water pockets or to the glacier base. But eventually, as the glacier contains more water through subsequent years of melt, flooding and damming will be more prevalent throughout the ice sheet. And so risks will likely be on the rise.

Other than similar events occurring in the Himilayas, we don’t really have much of a context by which to judge risk for large Greenland outburst flood events. We do know that melt ponding is now quite extensive in this region and we do know that the glacier itself is rather unstable — moving with rapid speed toward the ocean and containing pockets of melted water from past melt pond formation over the last two decades.

For today, I’m pointing out the current rainfall over ice and melt ponding event as part of a larger and dangerous trend, one that is likely to play a primary role in the pace and violence of Greenland melt going forward.

zodiac on greenland melt pond

(Photograph of a zodiac on the surface of one of Greenland’s very large melt ponds. Image source: Earth Observatory.)

Links:

University of Maine’s Climate Reanalyzer

LANCE MODIS

The Glacial Megaflood

Greenland Ice Loss Increases Fivefold From Late 1990s, West Antarctica Not Far Behind

In the early 1990s, it would have been hard to imagine the rates of glacial ice loss we are seeing now.

There were few ways to accurately measure the Greenland Ice Sheet’s mass. Snow fell, glaciers calved. But observations seemed to show that the great, cold ice pile over Greenland was in balance. Snow gathered at the top, glaciers calved at the edges, but human heating of the atmosphere had yet to show plainly visible effects.

At that time, climate scientists believed that changes to the ice, as a result of human caused heating, would be slow and gradual, and would probably not begin to appear in force until later in the 21st Century.

Greenland Jacobshavn July 30 2014

(Extensive surface melt ponding, dark snow near the rapidly melt Jakobshavn Glacier on the West Coast of Greenland in early August of 2014. Image source: LANCE MODIS.)

Ice Sheet Response Starts Too Soon

By the late 1990s, various satellites had been lofted to measure the gravity, mass and volume of structures on the Earth’s surface. These sensors, when aimed at the great ice sheets, found that Greenland, during a period of 1997 to 2003 was losing mass at a rate of about 83 cubic kilometers each year.

This rate of ice loss was somewhat small when compared to the vastness of the ice sheet. But the appearance of loss was early and, therefore, some cause for concern. More monitoring of the ice sheet took place as scientists continued their investigation, for it appeared that the ice sheet was more responsive to human warming than initially believed.

A Doubling After Just Six Years

By 2009 another set of measures was in and it found that the six year period from 2003 to 2009 showed a near doubling of ice mass loss from the Greenland Ice Sheet. Rates of loss had jumped from 83 cubic kilometers each year to around 153 cubic kilometers. The doubling caused consternation and speculation among climate scientists. Greenhouse gas heat forcing was rapidly on the rise and the world’s oceans were warming faster than expected as human emissions continued along a worst case scenario path. It appeared that the ocean was delivering heat to the ice sheet bases even as atmospheric warming was melting larger areas upon the ice sheet surface.

These changes to the massive ice sheets were occurring far more rapidly than previously considered.

Edge of Greenland Ice Sheet

(Hundreds foot high edge of the Greenland Ice Sheet in Kangerlussuaq as seen at the end of a long valley and across a cold estuary. Image source: EISCAT Scientific Association.)

The potential for a 3, 6, or even 9 foot or more sea level rise by the end of the 21st Century was raised. Perhaps even more ominous, global climate models were showing that rapid ice melt in Greenland and West Antarctica, should it occur, would play havoc with world weather systems. It was this jump in ice loss, in part, that spurred climate scientist and then head of NASA GISS, Dr. James Hansen to write his book The Storms of My Grandchildren as a warning that rapid mitigation in human greenhouse gas emissions along with a stabilization of atmospheric CO2 at 350 ppm would probably be needed to prevent severe consequences from human-caused warming.

But humans kept emitting at a break-neck pace, spending far more money to build coal, gas and oil based technology, than to reduce energy consumption through efficiencies or behavioral change or to invest in alternatives like wind and solar.

Melt Rates Surge Yet Again

And so, by January of 2014, heat forcing had continued to accumulate at a very rapid pace. CO2e heat forcing had spiked to 481 ppm, enough to melt the entire Greenland Ice Sheet and much of Antarctica as well, if maintained or increased over a long period.

And the Greenland Ice sheet was, indeed, melting at an ever faster clip. For the most recent assessment found that the loss rate from Greenland had again more than doubled — hitting a 375 cubic kilometer per year average during the period of January 2011 through January of 2014.

Greenland Ice Sheet Elevation Change

(Greenland Ice Sheet elevation change in meters as found in a recent report by the Alfred Wegner Institute. Note that all Greenland edge zones are now experience elevation losses. Due to higher elevations at the center of the ice sheet, elevation loss at the edge has an effect that speeds ice sheet motion toward the sea. The effect is similar to pushing down the edge of a plastic swimming pool, but on a much larger scale and with somewhat slower moving ice.)

It was an extraordinary rate of melt now 4.7 times faster than in the period from 1997 to 2003 and 2.5 times faster than during 2003 to 2009. But, likely, it is but one more milestone on the path to even faster melt.

The same study that found the Greenland melt acceleration also saw a tripling of the melt rate of West Antarctic since 2003 to 2009. Together, the ice sheets were found to contribute a combined mass loss of 503 cubic kilometers per year between Greenland and West Antarctic. This vast, and still apparently rising, loss now meant that the two great ice sheets were contributing at least one millimeter per year to sea level rise.

Likely Grim Future For Sea Level Rise

It is likely that mass rate losses will continue to increase until some kind of break or negative feedback comes into play. Similar rates of melt increase would mean an annual 5-8 millimeter sea level rise by 2035 due to Greenland and Antarctic melt on top of a 2-3 millimeter sea level rise from thermal expansion of the oceans and from other melt sources. But even taking into account the cooling effect at the ocean surface from ice melt and fresh water floods, one could easily envision the feared 1-3 foot sea level rise by sometime near mid century and the even more concerning 3-9 foot sea level rise amidst a very intense battle between hot and cold weather systems through to century’s end.

As of 2014, it appears the conditions leading up to the warned of “Storms of My Grandchildren” are well in play and rapidly building.

Links:

Alfred Wegner Institute: Elevation Change of the Greenland Ice Sheet

Greenland Ice Loss Doubles From Late 2000s

LANCE MODIS

The Storms of My Grandchildren

EISCAT Scientific Association

Hat Tip to TodaysGuestIs

Amazon Rainforest Wildfires Scorch Through Drought-Plagued Brazil During Southern Hemisphere Winter

It’s Winter. Sections of Brazil are experiencing their worst drought in 84 years. Sao Paulo, a city of 9 million, has 97 days of water supply left. And, again, the Great Rainforest is burning.

Over the past few decades a combination of insults including clear cutting, slash and burn agriculture, and rising instances of heatwaves and drought driven by human-caused climate change has resulted in increasingly severe impacts to forested regions around and within the Amazon. Major fires, which were once almost unheard of in the damp, wet regions of the great Amazon delta first cropped up in the late 1980s and early 1990s but have since become more widespread.

Amazon fire outbreak August 13 2014

(Wildfire outbreak in the Amazon on August 13, 2014. For reference bottom edge of frame is 180 miles. Image source: LANCE MODIS.)

Now, a combination of basement burning of root systems in the Amazon, heat, and drought are resulting in a kind of existential crisis for a region that has been described by scientists as ‘the Earth’s lungs.’ It is a situation that brings with it the ever-increasing risk of major fire outbreaks. And as of 2012 and 2013, after a period of ever-increasing burning, dry equatorial winters have brought with them extraordinarily severe fires that have torn through forested zones and threatened infrastructure. In one such instance during 2013, a major region-wide blackout was set off by a fire originating in Brazil’s rainforest.

And now the burning has begun anew.

For as of August 13 of this year, large wildfires were erupting within the Amazon near regions of cleared forest and deep within the forest interior. Over the past week, these fires expanded and became more widespread. Now, much of Brazil is under a pall of smoke from wildfires that have expanded to range over a very broad rainforest region.

Brazil Wildfires August 20 2014

(Smoke from wildfires covering almost all of the Amazon on August 20, 2014. For reference, bottom edge of frame is 1,000 miles and the Amazon River flows from middle left until it terminates at upper right into the South Atlantic. Image source: LANCE MODIS.)

News media and public reporting of fire instances within Brazil are sketchy. But the satellite picture doesn’t lie. Observational estimates place these fires in the range of 500,000 to 1,500,000 acres initially. But given the fire intensity, they are likely to burn on for weeks to months.

Conditions in Context: 3 Percent of the Amazon Lost To Fire From 1999-2010

The new fires originated in a region now known to harbor ongoing understory fires. These fires burn beneath the interlaced root systems of the Amazon and have been discovered to continue to smolder year-round. During times of intense heat and drought, these fires can break through to the surface and more intensely burn through large swaths of forestland. After burning, they sink back into the understory, waiting for another heat/drought trigger.

Last year, NASA published a study which found that fully 3 percent of the Amazon had likely been lost to fires during the period of 1999-2010. A primary culprit for these losses was found to be understory fires, which NASA identified as a significant threat to the Amazon forest system.

12 million square miles of Amazon burned

(3 percent or 33,500 square miles of a 1.2 million square mile area under investigation burned from 1999-2010 according to a 2013 NASA study. Location of fires indicated in orange.)

Perhaps most significantly, the NASA study implicated climate change as the primary cause for these fires, finding that drought and heatwaves related to increases in human heat trapping gasses had depleted ground moisture levels, resulting in a greatly increased instance of fires.

Post 2010, the satellite record indicates that these fires have continued to grow in intensity. And so the risk to the Amazon expands.

Overall, the Amazon currently stores about 120 gigatons of carbon. It represents about 10% of the global uptake of carbon from the atmosphere through forest tree and plant respiration. But as the Amazon burns and becomes deforested, it shifts from being a carbon absorber to a carbon emitter. Currently, depleted and burning areas of the Amazon are estimated to emit 500 megatons of CO2 each year. And though this has not yet tipped the balance to make the Amazon a net carbon emitter, human climate change and deforestation is driving the world’s largest rainforest rapidly in that direction.

Under human driven climate change and deforestation, the heat and drought situation will only worsen for Brazil. Even without clear cutting, the fires will expand and, eventually, the rainforest will be consumed. Without substantial mitigation action by humans, it is bound to happen. The vast carbon store that is the rainforest will almost certainly begin adding to the already rapacious human heating effect. A process that will continue for decades and will only end once the rainforest is gone entirely.

Links:

Brazil Drought: Sao Paulo Could Run Dry in Less Than 100 Days

NASA Study Shows 3 Percent of Amazon Lost to Fires from 1999 through 2010

LANCE MODIS

Forest and Climate

Effects of High Frequency Understory Fires on The Amazon Rainforest

Fire Spurs Blackout That Shuts off Power for 50 Million

Hat tip to Bernard

US Wind Hits Record Low Price of 2.5 Cents Per Kilowatt Hour; 9-12 Gigawatts of Renewable Energy Additions Ramp up for 2014

The excuses for failing to rapidly adopt renewable energy systems grow thinner and more contorted with each passing day…

During 2013, costs for wind energy plunged to record low levels as both wind and solar set to make substantial new capacity gains in 2014 and 2015, according to a recent report from the US Department of Energy.

PPA (Power Purchase Agreement) pricing for wind during 2013 plunged to the very low range of 2.5 cents per kilowatt hour after levelized costs were included for new wind energy projects. For comparison, the average range of PPAs for all new energy sources in 2013 was 2.5 to 5 cents per kilowatt hour and included wind, solar, natural gas and coal. This made wind energy the least expensive source for new energy in 2013 following a long trend of overall falling prices.

Price of Wind at all time low

(Price of wind hits all time low in 2013 at 2.5 cents per kilowatt hour. Image source: US Department of Energy.)

Solar prices also fell to within competitive ranges, leading to record adoption rates for that energy source for the US in 2013.

New wind generation is expected to hit between 4 and 6 gigawatts in 2014 and between 5 and 9 gigawatts in 2015. Overall, 13 gigawatts of new wind energy capacity is now under construction, with the bulk focusing on the wind-rich region of the central US.

Solar is also expected to make strong gains in 2014 by adding between 5 and 7 gigawatts of new capacity. Rapidly increasing US growth in solar energy installations has been led by a combination of factors including plummeting prices and a rising adoption of home solar energy through rooftop leasing arrangements targeted to save consumers money on their power bills.

By end of 2014, total installed wind capacity is expected to hit around 74 gigawatts in the US. Meanwhile, US solar capacity is likely to climb above 18 gigawatts by year end. Altogether, these combined energy sources, when taking capacity factor into account, will have produced about 5% of the US’s electricity.

US renewables forecast 2

(US renewable energy net electrical generation from 2013 [historic] through 2018 [projected]. Image source: SUN DAY Forecast using US Energy Information Agency sources.)

With new construction projects continuing, total US renewable energy generation is expected to exceed 13.4 percent by the end of 2014 and 16.11 percent by the end of 2018.

Strong Gains Necessary to Mitigate Human-Caused Climate Change, Barriers to Adoption are Now Chiefly Political

Though the combined continued net price drop and cumulative substantial renewable energy generation gains are encouraging, they will need to advance at ever faster rates if we are to have much hope for rapidly mitigating the worst effects of human caused climate change. US generative capacity additions for renewables should probably be in the range of 2-4 times their present rate of adoption and goals should be set for the total replacement of US ghg emitting generation capacity by or before 2050.

With prices for renewable electricity generation now at levels competitive with traditional fossil fuels, and, in the case of wind, far less than fossil fuels, the primary barrier to adoption is now political. Fossil fuel related organizers have, through lobbying and media related efforts, worked on a number of fronts to water down renewable energy incentive legislation and slow or block policy measures that would speed their adoption. Many of these groups are aligned with conservative members and climate change deniers in Congress, but also include a broad array of outside organizations.

These groups represent a final, but strong road block to adoption of permanent mitigations to climate change with broad ranging benefits such as practically unlimited base fuel sources and freeing economic systems from the specter of energy scarcity and insecurity. Given both the lurking risks of human-caused climate change and the prospective benefits of widespread renewable energy generation, the time for a broad push for rapid adoption of renewable energy systems is now.

Links:

US Department of Energy Wind Energy Report for 2013

SUN DAY Forecast

Price of Wind at All Time Low of 2.5 Cents Per Kilowatt Hour

Related Reading:

Major Court Clears the Way to Let Renewables onto the Grid

Proposed Coal Export Terminal Suffers Major Setback

July 2014 Shows Hottest Ocean Surface Temperatures on Record as New Warm Kelvin Wave Forms

According to NOAA’s Climate Prediction Center, July of 2014 was the 4th hottest in the 135 year global temperature record. Land surface temperatures measured 10th hottest in the global record while ocean surface temperatures remained extraordinarily hot, tying July of 2009 as the hottest on record for all years on measure over the past two centuries.

Overall, land temperatures were 0.74 C above the 1950 to 1981 average and ocean surface temperatures were 0.59 C above the same average.

These new record or near record highs come after the hottest second quarter year in the global temperature record where combined land and ocean temperatures exceeded all previous global high temperatures in the measure.

Much Hotter Than Normal July

Few regions around the globe showed cooler than average temperatures during July with zones over the east-central US, in the Atlantic just south of Greenland, and off South America in the Southern Ocean as the only regions showing cooler than normal temperatures. Record warmest temperatures ranged from Scandinavia to Iceland to Northeast Siberia, from California to Alaska to the Northeast Pacific, along a broad stretch of Pacific Ocean waters east of the Philippines and New Guinea, in pools in the North and South Atlantic Oceans off the coasts of North and South America, and in spots from Australia through the Indian Ocean to South Africa.

Land Ocean Temperature Percentiles July 2014

(Land and Ocean temperature anomalies for July of 2014. Image source: NOAA’s Climate Prediction Center.)

Overall, most of the surface of the Earth featured above average to record warmest conditions, while a minority of the Earth’s surface showed average or below average temperatures.

These new global heat records were reached even as slightly cooler than average waters began to up-well in the critical Eastern Equatorial Pacific region. A powerful Kelvin Wave that initiated during late winter and spring of 2014 failed to set off a summer El Nino and finally faded out, reducing heat transfer from Pacific Ocean waters to atmosphere. Even so, the ocean to atmosphere heat dump was enough to set off two record hot months for May and June and a record hot ocean surface month for July as ocean surface waters remained extraordinarily warm across many regions.

Hot Water August 18, 2014

(Ocean surface temperatures remained at or near record hot levels during July and August of 2014 despite a failed El Nino development in the Equatorial Pacific. The above graphic shows global water temperatures for August 18 at an extraordinary +1.13 C above the already hotter than normal 1979 to 2000 average. Image source: University of Maine.)

New Warm Kelvin Wave Begins to Form

Though the atmosphere failed to respond to a powerful Kelvin Wave issuing across the Pacific earlier this year, stifling the development of a predicted El Nino, it appears a new warm Kelvin Wave is now beginning to form. Moderate west wind back bursts near New Guinea initiated warm water down-welling and propagation across the Pacific Ocean during July and early August. The down-welling warmth appeared to link up with warm water upwelling west of New Guinea and began a thrust across the Pacific over the past week.

As of the most recent sub-sea float analysis, anomalies in the new Kelvin Wave ranged as warm as 4-5 C above average:

Kelvin Wave August 14, 2014

(New warm Kelvin Wave forming in the Equatorial Pacific. Image source: Climate Prediction Center.)

These sub-sea temps are rather warm for an early phase Kelvin Wave and may indicate another ocean to atmosphere heat delivery is on its way, despite a broader failure of El Nino to form by this summer.

Typically, strong Kelvin Waves provide the energy necessary for El Nino to form. The heating of surface waters due to warm water upwelling in the Equatorial Pacific tends to set off atmospheric feedbacks that perpetuate an El Nino pattern in which waters remain warmer than average in the Central and Eastern Equatorial Pacific for many months. Without these atmospheric responses, El Nino cannot form.

During 2013 and 2014, strong Kelvin Waves forming during spring time were not enough to over-ride prevailing and historically strong trade wind patterns thereby allowing El Nino to emerge.

Atmospheric ‘Hiatus’ is No Halt to Global Warming

During recent years, scientific analysis has confirmed that a negative Pacific Decadal Oscillation together with record strength trade winds has suppressed El Nino formation and ocean to atmosphere heat transfer, leading to a temporary slow down in atmospheric temperature increases even as world ocean temperatures spiked.

heat_content2000m

(Global ocean heat content for 0-2000 meters of depth shows inexorable upward trend despite the so-called atmospheric warming hiatus. Image source: NOAA Ocean Heat Content.)

This natural variability, which typically lasts for 20-30 years began around the year 2000 and has continued through 2014. During such periods of negative PDO, we would expect rates of atmospheric warming to cease or even to go slightly negative. Unfortunately, even though PDO has been negative for nearly 15 years, a phase which during the 1940s to 1970s drove 0.35 C of transient atmospheric cooling against an overall larger warming trend, we have still seen atmospheric warming in the range of 0.1 C per decade.

This is bad news. For as ocean heat content is spiking, the transfer from atmosphere to ocean has not been enough to even briefly cut off atmospheric warming. And at some point, the oceans will deliver a portion of their latent heat back to the atmosphere, causing an even more rapid pace of temperature increase than was seen during the 1980s through 2000s period.

In other words, we’ve bent the cycle of natural variability to the point where we see warming, albeit slower warming, during times when we should have seen atmospheric cooling. And all indicators — radiative balance measured by satellite, deep ocean water temperatures, glacial melt, and atmosphere — show ongoing and inexorable warming.

Links:

NOAA’s Climate Prediction Center

University of Maine

NASA: ‘Haitus’ in Global Surface Temperatures Likely Temporary

NOAA Ocean Heat Content

 

 

The Keystone Pipeline, Arctic Methane Eruptions, and Why Human Fossil Fuel Burning Must Swiftly Halt

Human fossil fuel emissions heating the Earth’s airs, waters, and ice.

From historic droughts around the world and in places like California, Syria, Brazil and Iran to inexorably increasing glacial melt; from an expanding blight of fish killing and water poisoning algae blooms in lakes, rivers and oceans to a growing rash of global record rainfall events; and from record Arctic sea ice volume losses approaching 80 percent at the end of the summer of 2012 to a rapidly thawing permafrost zone explosively emitting an ever-increasing amount of methane and CO2, it’s already a disastrous train-wreck.

Since the 1880s, humans have emitted nearly 600 billion tons of carbon into the atmosphere. This vast emission has spiked atmospheric CO2 and CO2e (when all other heat trapping gasses are included) levels to above 400 parts per million and 481 parts per million respectively. According to climate sensitivity and paleoclimate science, these volumes are already enough to increase global temperatures by between 1.5 to 2 C this century and 3-4 C long term.

At the current carbon emissions rate of more than 10 billion tons each year and growing at around 2 percent, humans will have emitted a trillion tons of carbon by 2041. Under business as usual fossil fuel burning, more than 2.5 trillion tons of greenhouse gas trapping carbon will hit the atmosphere before the end of this century. It’s a terrible blow we will sorely want to avoid. And one we can only circumvent if we start working to radically curtail carbon emissions now.

Already, we can see instances of emissions-driven climate change and related harm. But what we see now is minor compared to what the future holds in store. We’ve warmed the Earth by more than 0.8 degrees Celsius since the 1880s, and if human emissions do not swiftly come to a halt, we could easily see warming of 4, 5, 7 C or more by the end of this century alone.

Probability of stabilizing below 2 C

(Probability of exceeding 2 C warming this Century [equilibrium climate sensitivity] given a certain level of human greenhouse gas forcing. Note that this study did not include feedbacks from Arctic carbon stores. Also note that current CO2 equivalent forcing without aerosols is around 481 CO2e and with the aerosol negative feedback is around 425 CO2e. Also note that equilibrium climate sensitivity is about half that implied by Earth Systems Sensitivity over the long term [many centuries]. For a final note, consider that the aerosol negative feedback is temporary. Image source: IPCC.)

What Does Warming Look Like If We Continue To Burn Fossil Fuels?

We talk about warming in terms of degrees Celsius and gigatons of carbon burned. But what does it all really mean?

Droughts rampaging through the lower to mid latitudes as the US, Southern Europe, India, the Middle East, Brazil, Australia, the Sahel and sections of China rapidly turn to desert. Stratified oceans turning into extinction engines for fish and marine life, fresh water poisoning due to toxic algae blooms, oceans emitting increasing volumes of poisonous hydrogen sulfide gas into the air. Fires the likes of which we have never seen in the far north as the permafrost burns and methane leaks and explodes from the thawing earth. Floods raging from an atmosphere whose moisture cycling has increased by 30 percent or more. Sea level rise rapid enough to swallow cities and coastlines over the course of decades. Devastating storms emerging from the regions closest to large glacial melt events bordering Greenland and West Antarctica. And all around, more and more people migrating, trying to find a place that is not being gobbled up by desert, incessantly burning, ravaged by storms, flooded, or poisoned by toxic air and water.

Very Large Algae Bloom Barents

(Very large bloom of micro-organisms north of Scandinavia in Arctic waters on August 14, 2014. Arctic waters are rich in nutrients. As they warm and as the sea ice retreats, larger areas are freed for invasion by major blooms of algae and other microbes. Large enough blooms can rob the ocean of oxygen, produce harmful toxins, result in large fish kills, and in the end create dangerous bottom conditions favoring microbial hydrogen sulfide production. Image source: LANCE-MODIS.)

That’s the dark future we inch closer to with every 0.1 C degree of further warming, with each additional megaton of fossil fuel and industrial carbon hitting the atmosphere.

And it is in this context that we must judge our actions and those of our leaders in reducing or in failing to reduce a nightmare that now grows in intensity with each passing year. A nightmare we create and continue to contribute to each time we light a fossil fuel driven fire.

Quibbling over Keystone Carbon Emissions When Tar Sands is the Real Issue

50 billion tons. That’s the amount of extractable, burnable carbon that likely sits beneath what were once the green forests of Alberta and are now little more than a sprawling waste of smoking pits covering tens of square miles. It’s more than 8 percent of the carbon we’ve already dumped into the atmosphere and it’s a volume of carbon we simply cannot afford to burn.

1.7 million barrels of crude oil per day now comes out of a place that Tolkien would likely describe as a mechanized orc warren. Keystone would boost that total to 2.2 million barrels per day, enrich the pit owners, and lay the groundwork for an ever-more-rapid exploitation of this dangerous pile of atmospheric heat-venom.

This week, a recent study out of Stockholm’s Environment Institute found that the pipeline itself would result in at least 4 times the carbon emissions currently estimated by the US State Department. This, well-duh, assessment, came as pit mining cheerleaders such as the American Petroleum Institute and Canadian Industry groups marshaled yet another effort to ram the pipeline through and boost global carbon emissions all in one go.

IDL TIFF file

(Athabasca’s sprawling tar sands operation as seen from space in 2009. The brown ribbon cutting through center frame is the Athabasca river. Image source: NASA’s Earth Observatory.)

In the end, all fossil fuels are terrible, adding to the global nightmare described above. But tar sands are between 12 and 20 percent more carbon intensive than even regular oil, especially when burning of the, worse than coal, coke bi-product is taken into account.

Arctic Methane Explosions — A Result of Human Warming

On the other side of the Arctic from the smoking fossil fuel pits of Alberta, nature is in the process of excavating a new, and no less terrifying, kind of pit. For from the Siberian tundra this summer were discovered three gaping wounds in the earth. Black holes shaped by impressive charges of methane blasting up from beneath the thawing permafrost.

All around the holes were ejected material. A kind of reverse meteor strike or methane volcano in which frozen methane trapped in clathrate beneath the thawing permafrost warmed enough to destabilize. The thawed methane built up in pressure pockets 250 feet or more below ground. Eventually, the pressure became too great and the permafrost overburden erupted, ejecting both earth and methane into the air above.

Eyewitnesses described eruption scenes where the Earth at first began to smoke. The smoke continued to bleed from the ground. Then, there was a loud flash and bang. When the smoke cleared, the methane eruption craters were plainly visible — a rim of sloped and ejected earth surrounding a black, gun-barrel like structure tunneling deep into the ground.

Scientists investigating the sites of these explosions found methane readings of 9.8% at the bottoms of the holes. These are high enough levels to burn if exposed to an ignition source — an atmospheric reading 50,000 times the current and already highly elevated ‘normal’ level.

Russia Siberia Crater

(One of three freakish craters caused by eruptions of methane from Siberia’s thawing tundra. Image source: Moscow Times.)

The Arctic permafrost alone contains about 1.5 trillion tons of carbon. And when it thaws, a portion of that carbon is bound to be released. It will be broken down by microbes and turned into methane in wet soil. In drier soil, it will form a peat like underburden that will slowly release CO2 by decay or, in more violent instances, by burning in one of the ever more powerful wildfires raging through the Arctic during the increasingly hot summers.

Beneath the icy permafrost layer are pockets of frozen methane in the form of clathrates. These structures are not included in the 1.5 trillion ton carbon estimate for permafrost. They are an addition of likely billions more tons of carbon. And, this year, we can now see a physical mechanism for their continued release — warming and thaw of the permafrost overburden.

The Human-Arctic Feedback Link: Why We Absolutely Must Stop Burning Fossil Fuels, And Swiftly

It is estimated that 1.5-2 degrees Celsius worth of global warming (5-8 C Arctic warming) is enough to thaw all the permafrost and eventually release a substantial portion of the carbon stored in and beneath it. For the Arctic warms much faster than the globe as a whole. In tundra regions, rates of warming over the past three decades have been 0.5 degrees Celsius per decade or more. In the region where the methane craters were discovered, recent temperatures at 5 degrees Celsius above average, during summer heatwaves in 2013 and 2014, have been reported.

As a result of past and current human greenhouse gas emissions, we have already locked in a substantial and significant rate of Arctic carbon emission feedback. And the speed of the Arctic carbon store release will likely determine how rapidly and whether other global carbon stores also respond.

A 2011 survey of 41 Arctic researchers found that rapidly reducing human greenhouse emissions would limit the volume of carbon feedback from the Arctic to 10% of the annual current human emission (or about 1 billion tons of carbon per year) by the end of the 21rst Century, but continue that emission for centuries to come (current Arctic carbon emissions are likely in the range of 30 million tons of methane and 100 million tons of CO2 each year). This is bad news. For we have already burned enough fossil fuel to keep warming on the trajectory to hit 1.5 to 2.5 C this century and 3-5 C or somewhat more long term — a bad result, and one that would likely require extensive human deployment of atmospheric carbon capture technologies. But it is far better than the alternative.

For continued fossil fuel burning would be enough to force a release of Arctic carbon stores equal to 35% or more of the human annual emission, or about 3.5 to 4 gigatons of carbon each year. By itself, this emission would easily represent a mini-runaway pushing the business as usual burning level of 800 ppm CO2 and 1,000 ppm CO2e by end century to 1,400 ppm CO2 + over the course of centuries and likely resulting in 4-7 C + warming this century and 12-14 C + worth of warming long term. A hothouse extinction event to rival or potentially exceed the worst seen in the geological record.

We simply must stop fossil fuel burning as it risks triggering ever greater carbon releases from stores around the globe and especially in the Arctic. In this way, stopping fossil fuel burning or failing to stop that burning is directly related to the ferocity and intensity of the Earth systems response we set off. And halting the Keystone Pipeline is a good approach to curtailing future carbon emission increases. A good start to a long, hard road ahead.

Links:

World Food Security in the Cross-hairs of Human-Caused Climate Change

Nature: Human Warming Pushing Entire Greenland Ice Sheet Into the Ocean

A Song of Flood and Fire

Toledo Algae Bloom Still Ongoing

2012’s Realization of the End of Arctic Sea Ice

The Arctic Methane Monster Exhales: Third Tundra Crater Found

A Faustian Bargain on the Short Road to Hell: Living in a World at 480 CO2e

How Much Will Tar Sands Oil Add to Global Warming?

IPCC 4th Assessment Report

LANCE-MODIS

Terrible Thunderstorms of Fire

How Global Warming Wrecks the Jet Stream, Amps up the Hydrological Cycle

Impact of the Keystone XL Pipeline on Global Markets and Climate Change

NASA’s Earth Observatory

Moscow Times

The Really Scarey Thing About Those Jaw-Dropping Siberian Craters

Methane Flammability

Methane and Frozen Ground

High Risk of Permafrost Thaw

 

 

Terrible Thunderstorms of Fire Over Canada as Arctic Territory Continues Record Burn

They call them pyrocumulonimbus. In layman’s terms — fire thunderstorms.

*   *   *   *   *

At the surface, a very large wildfire covering tens of square miles or more can produce quite a lot of heat. The smokey column cast off by the burning blaze rises, generating lift in the atmosphere even as it seeds the air with smoke — nuclei to which water droplets can adhere and from which clouds can form. The rising column contacts water vapor, pushing a vast head of it upward. As this heat-driven column hits the upper reaches of the troposphere, it cools, and the water vapor condenses to the readily available smoke aerosols.

This process produces what is called a pyrocumulus cloud or a fire cloud — a smoke and heat fed version of the normal and far less ominous puffy cumulus clouds we are so accustomed to seeing during summer afternoons. In the pyrocumulus, if the updraft is intense enough, if the fire beneath the cloud strong enough, it erupts into a pyrocumulonimbus — a fire thunderstorm rife with lightning and, if the firefighters are lucky, rain as well.

On August 5, 2014, NASA got an amazing shot of a pyrocumulonimbus cloud exploding over the massive and anomalous wildfires still raging in Arctic Canada. See that horrific boiling cloud stack above fire and smoke in the center-left of the image below? That’s a fire thunderstorm:

Pyrocumulonimbus

(Explosive pyrocumulonimbus cloud near Great Slave Lake on August 5 of 2014. Marked off red areas in the image indicate fire boundaries for individual fires. For reference, Buffalo Lake in the lower left corner is about 35 miles long from end to end. Image source: NASA.)

Dark Carbon Delivery Mechanism

NASA keeps a close watch on fire thunderstorms for a number of reasons. First, they are an indication of the heat updraft intensity rising off the fire beneath. And though they can result in beneficial rains, the storms are, many times, dried out by an over-abundance of smoke. As a result, a dry fire thunderstorm can add to fire hazard by casting off bolts of fire-setting lightning while begrudgingly holding back their moisture load.

Lastly, and perhaps most hauntingly, the fire thunderstorm is a delivery mechanism for black and brown carbon aerosols to the stratosphere, where they can do considerable damage. For if the updraft in the fire thunderstorm is powerful enough, water vapor droplets laden with heat intensifying dark carbon can break the troposphere boundary and enter the stratosphere. There, these dark aerosols trap heat and intensify global warming.

NASA studies have shown that dark aerosols in the stratosphere can have a global warming potential impact up to a million times that of a similar volume of CO2, so even a small amount lofted by fire thunderstorms could have a substantial effect. And the recent very, very intense fires in the Arctic region may well be providing an ominous and very widespread mechanism for just such a dangerous delivery.

Fire Thunderstorms Over Record Arctic Burn Zone

The region where this fire thunderstorm erupted on August 5 is experiencing what is likely the most intense Arctic burn Canada has ever seen. Since the start of this year, and as of August 6, about 2,850,000 hectares (11,000 square miles) have burned in the Arctic Northwest Territory (NWT) alone. This burn area so far for this one territory is almost twice that for the whole of Canada during an average year through early August. For the NWT, it represents an epic burning more than 15 times that of the 15 year average (which is usually 185,000 hectares by this time of year).

Expected Canadian Forest Fire Severity Increase

(Expected Canadian fire severity increase from 1980s through the end of the 21st Century. Findings based on climate model assessments. Image source: Skeptical Science.)

To say that such a major burn for an Arctic region normally resistant to wildfires is extraordinary may well be an understatement. The blazes this year cast off smoke that covered much of the North American Continent, crossed Greenland and has ridden weather systems around the globe. Many fires have burned non-stop for more than a month, burning the soil and thawed permafrost once the forest fuels are exhausted.

Climate models show an increased prevalence of Arctic wildfires as human warming continues to advance into the Arctic this Century. As of the mid 2000s and throughout this decade, we have seen very intense wildfires raging in Arctic Canada, Alaska, Scandinavia, and Siberia.

Siberian Wildfires August 6

(Massive wildfires still burning in Siberia on August 6, 2014. For reference, bottom edge of frame is about 300 miles. Image source: LANCE-MODIS.)

That these fires are an amplifier to human driven warming is probably a given. They dump extra CO2 and methane into the atmosphere, they burn both the more recent forest carbon store and the far older store in the soil, they break the permafrost cap, opening up new fuels for fires in subsequent years and providing avenues for methane and CO2 release, they dump dark carbon over low albedo surfaces such as ice sheets and sea ice, and they produce fire thunderstorms with the potential to inject dark carbon into the stratosphere.

While taking into account the entire Arctic system feedback to human caused climate change will likely be a monumental task, the mechanism of Arctic wildfires to tap and deliver the massive land-based Arctic carbon store to the atmosphere in various ways may be one of the critical elements in the overall feedback system. One that to any rational observer appears to be energetically emerging now. An expanding Arctic outburst of summer smoke and flame that is terrifying to watch.

Links:

NASA

LANCE-MODIS

NASA Captures Rare Pyrocumulus Image

Skeptical Science

Hawaii in a Sea of Storms: Abnormally Warm Pacific To Serve Up Unprecedented Double Cyclone Strike?

Hawaii in a Sea of Storms

(Iselle [center frame] and Julio [right frame] take aim on Hawaii [upper left] in most recent LANCE MODIS satellite shot.)

The Northern Pacific has been a very hot place this year. Above the Equator and stretching from Asia to the West Coast of North America, very few regions have witnessed below normal temperatures. And numerous very large hot zones continue to dominate off of Central and North America, between Alaska and Russia, and near Japan.

Overall, Pacific Ocean temperatures today are an excessive +0.93 degrees C above the, already hotter than normal, 1979 to 2000 average. And this extra heat, fueled by global warming, provides energy for the propagation of tropical cyclones well outside of their traditional ranges.

For Hawaii, this means falling under threat of two cyclone strikes within the period of as many days.

Hot Pacific Waters Projected to Spawn More Hawaiian Storms

Cyclone strikes in Hawaii are rare. The last time the island state was pummeled by a tropical storm was during the 1992 El Nino. But now it is threatened by not one, but two hurricanes. It is an event that is unprecedented in the entire satellite record. In other words, we’ve never seen this before.

Pacific SST Anomaly August 6

(Global sea surface temperature anomaly on August 6, 2014, shows an extreme +1.11 C positive temperature departure for the globe and a very strong +0.93 positive temperature departure for the North Pacific. Current science shows that warming ocean waters are extending the northward ranges of tropical cyclones, bringing regions like Hawaii under increasing threat. Image source: University of Maine.)

A shift in hurricanes toward Hawaii wasn’t entirely unexpected, however.

In 2013, Hiroyuki Murakami, from the International Pacific Research Center at the University of Hawaii at Mano together with a team of ocean and atmospheric researchers produced a report for Nature entitled Projected Increases in Cyclones Near Hawaii. The study modeled expected increases in Pacific Ocean surface temperature driven by human-caused climate change in the region near Hawaii. What it discovered was a marked increase in storm formation near Hawaii due to warming waters and related atmospheric changes.

The paper notes:

A key factor in projecting climate change is to derive robust signals of future changes in tropical cyclone activity across different model physical schemes and different future patterns in sea surface temperature. A suite of future warming experiments (2075–2099), using a state-of-the-art high-resolution global climate model1, 2, 3, robustly predicts an increase in tropical cyclone frequency of occurrence around the Hawaiian Islands.

Change in tropical cyclones

(Change in tropical cyclone frequency between now and 2075-2090 according to model projections produced in the Murakami Paper. Image source: Nature. See Also: Climate Change May Increase Number of Hawaiian Hurricanes)

What these researchers might not have expected was that a very warm Pacific during 2014 might well provide a prelude to what their models were predicting.

Iselle and Julio Barreling On In

For forecasts now show that Hawaii may well be in for a dose of double trouble — an extended period of stormy conditions starting early Friday and possibly not letting up until Monday as the unheard of storm pair barrels on in.

As of the most recent advisory, 85 mph hurricane Iselle was located about 650 miles to the east and southeast of Hilo. Iselle’s present and projected motion toward the west and northwest at around 15 miles per hour is expected to bring the storm, at a strong tropical storm intensity, over Hawaii’s Big Island by Friday. The storm is then projected to pass near the eastern islands before tracking back out into the open Pacific.

Coming directly behind Iselle, Julio is located about 1600 miles east-southeast of Hilo and packs maximum sustained winds of 75 miles per hour. The storm is also expected to weaken to strong to moderate tropical storm status before passing over or near the Hawaiian Island Chain along a track just to the north of Iselle’s path. This would bring the storm near the islands on Sunday, just two days after Iselle.

Threat Cones

(Threat cones for Iselle, Julio and Genevieve, all developing in an unusual region near the Central Pacific. Image source: NOAA.)

It’s worth mentioning that a third storm, Genevieve, has also developed in the mid-Pacific within about 1,000 miles of the Hawaiian chain — also in a rather rare region for tropical cyclone formation. Genevieve, however, is not expected to threaten the islands as it tracks westward, taking a long journey toward Asia.

Conditions in Context

These three cyclones generated over warm waters near the central equatorial Pacific. The storms emerged from a convective pattern in a region that typically only shows robust storm development during El Nino.

Though El Nino is not officially ongoing, atmospheric conditions over the past few weeks have become more favorable even as a new warm Kelvin Wave appears to be forming in the waters of the Western Pacific. NOAA still forecasts a weak to moderate El Nino for 2014, but conditions, though somewhat more favorable, remain murky.

Sea surface temperatures in the region of Hawaii

(Current sea surface temperatures in the region of Hawaii are a in rather warm and mostly above average range from 26 to 28 C [80 to 83 F], more than enough to sustain powerful tropical cyclones. Generally, water temperatures above 75 F are needed for tropical cyclone formation and strengthening. The primary limiters to both Eselle’s and Julio’s strength remains wind shear, which is expected to reduce both storms to tropical storm status over the coming days. Even so, Hawaii is in for an ongoing period of unprecedented weather. Image source: National Hurricane Center.)

It’s worth noting that a rash of storms in this region is unprecedented in the satellite era and is especially odd considering that ENSO remains neutral. It is very likely that the outbreak is in some way related to the larger Pacific Ocean warming trend associated with human-caused climate change acting together with an El Nino-like development trend.

UPDATE: Due to warm surface waters in the region of Hawaii and somewhat more favorable than expected atmospheric conditions, Iselle is expected to make landfall on the big island of Hawai’i near Hawaii City later today. Expected maximum sustained winds at the time of landfall are near 75 miles per hour.

Hurricane tracking from NOAA brings the storm directly over the Big Island at around midnight after which the storm is predicted to skirt Maui and Oahu:

NOAA Hurricane Track Iselle

(NOAA’s most recent projected storm track for Iselle. Image source: National Hurricane Center.)

Links:

Double Trouble: Hawaii Braces For Hurricanes Iselle and Julio

Climate Change May Increase Number of Hawaii Hurricanes

Projected Increases in Cyclones Near Hawai

NOAA

University of Maine

LANCE MODIS

National Hurricane Center

Hat tip to Eleggua

 

Follow

Get every new post delivered to your Inbox.

Join 3,911 other followers

%d bloggers like this: