From Pole to Pole, Global Sea Ice Values are Plummeting

During the record hot year of 2016, both Arctic and Antarctic sea ice extents took a huge hit.

Extreme warmth in the Arctic helped to produce leading losses there. Values that began during January at 1 million square kilometers below average have steadily declined as the months progressed to near 2 million square kilometers below average. Meanwhile, the Antarctic — which began the year at near average sea ice extent values — saw significant losses as the region grew anomalously warm during austral spring. Today, sea ice extent values surrounding the Antarctic are now also just shy of 2 million square kilometers below average.

labe-sea-ice-anomaly-graph

(Zachary Labe, one of the most well-recognized up and coming U.S. climate scientists, has produced this graph based on NSIDC recorded global, Arctic, and Antarctic sea ice values. As you can see, global sea ice extent during the hottest year on record has steadily plummeted to near 4 million square kilometers below average as the months progressed. Image source: Zack Labe’s Sea Ice Figures. Data source: NSIDC. You can also follow Zack’s informative twitter feed here.)

In total, global sea ice coverage is now about 3,865,000 square kilometers below average.

If you think that number sounds really big, it’s because it is. It represents a region of lost ice nearly 40 percent the size of the land and water area of the entire United States including Alaska and Hawaii. To visualize it another way, imagine all of the land area of Alaska, California, Texas, Montana, Arizona and New Mexico combined and you begin to get the gist.

Sea Ice Coverage — An Important, But Complex Climate Indicator

Many climate specialists have viewed sea ice as a kind of climate change canary in the coal mine. Sea ice sits upon the warming oceans and beneath a warming atmosphere. And these oceans are now taking up the majority of the heat being trapped in the atmosphere by fossil fuel emissions. Warming ocean surfaces have a higher specific heat value than the air and this greater overall energy capacity in warming regions generates a substantial blow to ice coverage even if the initial water surface temperature swing is only moderate.

Once sea ice is lost for a significant period, a kind of feedback loop comes into play where dark ocean surfaces trap more of the sun’s rays during polar summer than once-white ice coverage — which previously reflected radiation back toward space. This newly absorbed heat is then re-radiated back into the local atmosphere during polar fall and winter — creating an inertial barrier to ice reformation and ultimately generating a big jump in seasonal ocean and atmospheric surface temperatures.

image

(Highly pronounced ocean surface warming coupled with warm air invasions appears to be generating the extreme losses to sea ice now seen in the Arctic. The Barents Sea, shown above, has seen particularly extreme warming. Note the 11 C above average hot spot near the sea ice edge zone. In the Antarctic, the causes of losses remain uncertain. However, atmospheric warming and shifts in the circumpolar winds appear to be producing this effect even as slightly cooler than average surface waters remain in place — possibly due to storm related Southern Ocean upwelling and increasing fresh water outflows from Antarctic glaciers. Image source: Earth Nullschool.)

This dynamic is particularly pronounced in the Arctic where a thawing ocean surrounded by warming continents tends to readily collect heat even as atmospheric energy transfers from the south, in the form of warm wind events, have grown more pronounced. An effect related to the climate change influence known as Northern Hemisphere Polar Amplification.

In the Antarctic, the stormy Southern Ocean generates up-welling. This dynamic tends to cool the ocean surface even as it transfers heat into the deeper ocean. And increasing stormy conditions surrounding Antarctica related to climate change can intensify this effect. In addition, warm bottom waters melting sea-fronting glaciers in Antarctica produce a lens of fresh water which cools the surface and also traps heat below. So the signal coming from Antarctica with regards to sea ice has tended to be more mixed — with atmospheric warming and changes in wind patterns generating more variable sea ice impacts relative to the Arctic. So this year’s sea ice losses there are more difficult to directly link to climate change even though climate change related influences on the physical system in the Antarctic and among its surrounding waters are becoming more and more apparent.

Zack Labe notes that:

The Arctic sea ice anomaly, however, fits with the ongoing Arctic amplification trend of thinning sea ice and loss of old ice. Additionally, it has been well noted in previous literature (i.e., ) concerning the increasing fall temperatures in the Arctic and possible causes.

Major Volume Losses From 2015 to 2016

Despite big losses to sea ice surrounding the Antarctic this fall, it is the Arctic where the damage and risk of further loss is most pronounced. Particularly, reductions to thicker, multi-year ice in the Arctic during 2015 to 2016 have been exceptionally severe:

image image

In the above images, we see a comparison between late November sea ice coverage and thickness as provided by the U.S. Navy ARCc model. The left frame represents late November of 2015 and the right frame represents projected values for November 20, 2016. Note the greatly reduced coverage in the 2016 image. But even more noteworthy is the substantial loss of thicker ice in the Arctic Ocean north of the Canadian Archipelago and Greenland.

These two images tell a tale of a great loss of sea ice volume. One that the sea ice monitor PIOMAS confirms. According to PIOMAS, ice volume values during October were tracking near lowest levels ever recorded. And continued heat into November generates a concern that a period of new record low volume levels may be on the way.

But it’s not just the record low values that should be a concern. It’s the location of the remaining thick ice that’s a worry as well. For a substantial portion of the remaining thick ice is situated near the Fram Strait. Wind and ocean currents tend to push ice out of the Arctic Ocean and through the Fram. Ice tends to then be funneled down along the coast of Greenland and on into the North Atlantic where it melts. So the fact that a big chunk of the already greatly reduced remaining thick ice now sits on the edge of the sea ice version of Niagra Falls is not a good sign.

La Nina Years Tend to Push More Heat Toward the Poles

It is notoriously difficult to accurately forecast sea ice melt and refreeze trends in the various seasonal measures for any given individual year. And even many of the top sea ice experts have had a devil of a time forecasting the behavior of sea ice during recent years. However, one thing remains quite clear — the long term trend for sea ice in the Arctic is one of rapid decline.

arctic-sea-ice-death-spiral

(Arctic sea ice ‘Death Spiral’ by Andy Lee Robinson. Image source: Haveland.)

We are now entering a situation where one very warm winter followed by one warmer than normal summer could push Arctic sea ice values to near the zero mark. A situation that could effectively set off a blue ocean event in the near future. A number of prominent sea ice experts have predicted that it’s likely that such a state will be achieved rather soon — by the early 2030s under current trends. Others point toward nearer-term loss potentials. But there is practically no-one now saying, as was often stated during the early 2010s, that a blue ocean event could hold off until the early 2050s.

All that said, the trajectory going into 2017 for the Arctic at present doesn’t look very good. Both sea ice extent and volume are now at or well below the previous low marks for this time of year. Remaining thick ice positioned near the Fram Strait generates a physical disadvantage to the ice in general. In addition, NOAA has announced that La Nina conditions are now present in the Equatorial Pacific. And La Nina events tend to push more ocean and atmospheric heat toward the poles — particularly toward the Arctic.

Links/Notes/Disclaimer:

Note: This article is written as a follow-on to the previous blog post — For The Arctic Ocean Above 80 North, It’s Still Summer in November — and they should be read together for context.

Disclaimer: I asked PhD student Zachary Labe to make a general comment on sea ice trends, to which he generously provided his particular take on the Arctic. I have also made my own best-shot science and observation-based analysis of the situation given current trends. Because of the fact that the present situation is new and evolving, some of my statements may well pass outside the bounds of currently accepted science. The fact that Labe commented in this post does not, in this case, mean that he agrees fully or in part with my particular initial rough analysis of the subject.

Zack Labe’s Sea Ice Figures

NSIDC

Permafrost and Arctic Sea Ice — Climate Canaries in the Coal Mine

Increasing Fall-Winter Energy Loss From the Arctic Ocean and its Role in Arctic Temperature Amplification

Earth Nullschool

Arctic Sea Ice Graphs

PIOMAS

U.S. Navy ARCc Model Sea Ice Thickness

Haveland

NOAA

Hat tip to Andy Lee Robinson

Hat tip to Cate

Advertisement

For The Arctic Ocean Above 80 North, It’s Still Summer in November

It’s going to be the hottest year on record — by a long shot. Just ask Gavin Schmidt at a NASA that the climate change denying Trump Administration has now imperiled. But in one region — the Arctic — the rate of heat accumulation has been outrageously extreme. And it is there that this new record warmth could inflict some of the worst damage to an increasingly fragile Earth System.

Summer Heat During Fall Above 80 North

For in the Arctic Ocean above the 80 degree north latitude line which encircles the crest of our world, temperatures today are around 17 degrees Celsius above average. These are the warmest temperatures for this region ever recorded. And they include numerous locations in which temperatures spike to well above 20 C (36 F) warmer than average.

meant_2016

(Temperatures above the 80 degree north latitude line during mid November are about equal to what you would typically expect for late summer. This record warmth in the Arctic is notably severe and could produce serious near term climate and weather impacts. Image source: DMI.)

Taken in total, this region — one that includes the North Pole — is currently experiencing temperatures that it would typically see from September 15 through 21. In other words, it’s about as warm now, on November 14th, in the zone surrounding the North Pole as it typically is during the last week of summer.

It wouldn’t be quite so bad if temperatures had simply rocketed to new highs on this particular day as part of a wild temperature swing. Unfortunately, readings instead have remained consistently high throughout autumn. They have levitated off the baseline 1958-2002 average range for the better part of 80 days. And as temperatures maintained near late summer or early fall averages, the departure from normal (represented by the green line in the graph above) has continued to intensify throughout November. Such long-term maintenance of high temperatures risks producing some severe lasting impacts on both the Arctic and the global environment.

The North Pole’s Big Red Hole

The temperature range we see now is nothing less than astonishing and, to this particular observer, terrifying. A huge hole has been blown in the heart of what should be the building cold of winter. And if it doesn’t reform soon, it will have some serious knock-on climate effects to include worsening atmospheric circulation changes, related increasingly extreme weather, impacts to growing seasons, impacts to sea ice, impacts to Greenland ice, and impacts to life in the Arctic and beyond.

sections-of-arctic-ocean-warm-enough-to-melt-in-late-fall

(Today, large swaths of the Arctic Ocean are expected to see temperatures hit 20 C [36 F] + warmer than normal. These temperatures are so high that recently ice-covered sections will, over the next five days, experience temperatures between -2 C and 0 C — or warm enough to produce temporary melt. Such a condition has never been witnessed to the extent that it is now so late in the year. A clear sign that global warming is starting to bite deeper than we had hoped. Image source: Climate Reanalyzer. Note — the map shows temperature departures above [red shift] and below [blue shift] the, already warmer than normal, 1979-2000 baseline average.)

This record fall warmth appears to be part of an ever-more-pervasive ‘death of winter’ type scenario related to human-caused global warming. And unless temperatures in the Arctic revert back toward base-line pretty soon, we are at increasing risk of hitting some state-change tipping points. In particular, these center around a nearer term loss of Arctic Ocean ice than expected. An event that could happen this year if we experience an anomalously warm winter followed by a similarly warm summer — but one that many experts expect to hold off until the 2030s. An alteration that, longer term, under the continued fossil fuel burning presently promoted by the Trump Administration, basically removes winter as a season pretty much altogether (at least as we know it).

I sincerely hope that we see a return to baseline temperature conditions in the Arctic soon. But as the days roll by, this seems less and less likely. Warm winds keep flowing in both from the Barents and the Bering. And the centers of coldest Northern Hemisphere regions are well displaced toward Siberia and Greenland. If this situation continues, implications for summer sea ice during 2017 could be pretty rough (more on this in the follow-on post). And it’s at the point where we hit ice-free summer states in the Arctic Ocean that some very radical regional, hemispheric, and global changes (which produce even worse effects than some of the bad outcomes we’ve already seen) will be well underway.

Links:

Climate of Gavin

Cires1 80 North Temperature Anomaly

DMI

Jennifer Francis on Jet Stream Changes due to Sea Ice Loss

Climate Reanalyzer

The Trump Administration’s Anti-Climate, Pro-Fossil Fuels Agenda

From the Bering to Maine Hot Oceans are Killing the Puffin

(UPDATED)

From the Bering to Maine, Hot Oceans Are Killing the Puffin

“The Bering Sea has been off-the-charts warm. We’ve never seen anything like this. We’re in uncharted territory. We’re in the midst of an extraordinary time.” Nate Mantua, an ecologist at NOAA’s Southwest Fisheries Science Center in Santa Cruz, California in this National Geographic article.

*****

Some have claimed that the effects of global warming are only gradual and mild. That the impacts to the Earth’s weather systems, its oceans, its lands, its web of life do not now represent a crisis that risks global catastrophe and mass human tragedy. That, somehow, the growing die-offs now inflicted on key species amounts to some kind of pleasantly quiet background noise that we should rationally, coldly, consider, but that should not increase our level of concern or, perish the thought, alarm. And when the very real harms that are now escalating as a result of climate change are realized more fully by human civilization, the fact that these voices did not warn us more strongly, that some of these voices attacked those of us who were rationally concerned, will stand in history as stark evidence to the harms of pandering to the false comfort of an unwarranted reticence.

image

(Today, sea surfaces in regions surrounding the Arctic are between 2 and 10.5 degrees Celsius above average. These waters are so warm now that they are less able to support a vital food chain. And the impact to Puffins has been considerable. Image source: Earth Nullschool.)

If they could speak, a lovable breed of northern bird would tell us their own tale of tragedy and loss at the hand of global heat. And if we could hear the sad tale of their own great plight, our hearts and minds might not be so hard or so cold. For in and near the Arctic there is every indication that winter is dying and along with it, the Puffins.

Mass Puffin Die-Off Underway

Northern waters are rich with life. Or they were, at least, until recently. High oxygen content, cold water, high nutrient content all help to form a basis for the teeming life of this region. However, as atmospheric carbon levels increase and as oceans warm, these waters become less able to support life. They hold less oxygen. They become more acidic. And they tend to become more stratified. The food chain is disrupted and winnowed down. And such a winnowing can have a terrible impact on all kinds of life forms.

For the Puffin, such ocean warming related food losses have become a subject of growing alarm among researchers. In the Bering Sea between Alaska and Russia, both National Geographic and Digital Journal have compiled reports of severe loss of life to both adult birds and young. In parts of the Bering sea, adult Puffins are dying at 200 times the normal mortality rate. Nesting rates, normally at 60 percent, have plummeted to 12 percent. And the few chicks that do manage to hatch from eggs are emaciated.

Tufted Puffin

(Charismatic Puffins imperiled by climate change are now subject to an increasing extinction pressure due to this man-made crisis. Image source: NRDC.)

Over on the Atlantic side, a similar mass die off of Puffins has occurred in the Gulf of Maine even while stresses to the birds have been increasing into Scotland, the Barents Sea and Iceland. Die offs further south in Maine began to become widespread during 2014 as the waters off the US East Coast hit extreme levels of warmth. By 2016, the mass mortality had extended to Iceland where more than 80 percent of Puffin chicks were reported dead.

To researchers, there’s no mystery as to what’s killing the birds. They’re starving. But the root cause of the great loss among Puffins is even more disturbing. Julia Parrish, a University of Washington professor who coordinates a West Coast volunteer bird-monitoring network noted to National Geographic:

“Clearly something very weird is going on. It’s basically every year now we’re getting some huge mass-mortality event. It seems that the bottom-up changes provoked by the atmosphere are creating massive, massive changes in marine ecosystems. And the forage fish that everything depends on are taking it in the shorts.” (Emphasis added)

In other words, the fish that Puffins feed on are dying due to global climate change and so the Puffins are dying too.

Conditions in Context — We All Rely on Bountiful Oceans

If we are unable to escape the stresses of our own lives, or step back from our own individual difficulties to take account of the larger trajectory of our race, the plight of Puffins starving in the North Atlantic or Bering Sea may seem a remote or minor concern. However, when one realizes that, like the Puffins, human beings also rely on the bounty of the oceans as a primary food source, the matter strikes much closer to home. And in this case, Puffins join a long list of ocean-dependent wildlife — corals, seals, fish, polar bears, walruses, lobsters and so many more — who are sending us an increasingly loud warning as they perish.

Life in the world’s waters is in peril due to the warming we are causing. And because life on land is ultimately connected to what happens in the waters, not paying attention, not responding to what’s happening by halting the fossil fuel emissions that have created this terrible extinction pressure, is a wretched road to follow.

Links:

Puffins are Starving to Death Because of Climate Change

Puffins Starve to Death in High Numbers off the Gulf of Maine

Something is Seriously Wrong on the East Coast and it’s Killing all the Baby Puffins

Huge Puffing Die-Off May Be Linked to Hotter Seas

Global and Regional Food Consumption

NRDC

Hat tip to Colorado Bob

Hat tip to marcyincny

%d bloggers like this: