Mass Whale Death in Northeastern Pacific — Hot Blob’s Record Algae Bloom to Blame?

Something lurking in the Northeastern Pacific is killing off the graceful giants of the world’s oceans. For since May of 2015 30 large whales have been discovered dead — their bloated and decaying bodies washed up on Alaskan shores. It’s an unusual mortality event featuring a death rate of nearly 400 percent above the average. So far, scientists don’t yet have a culprit. But there is a prime suspect and it’s one that’s linked to climate change.

*  *  *  *  *  *

Bears consuming whale carcass

(Bears consume the carcass of a beached finback whale on the Alaskan coastline. Image source: NOAA.)

This month the US government declared an ‘unusual mortality event’ after it was confirmed that 30 large whales including 11 finback whales, 14 humpback whales, one gray whale and four other whales so bad off it that spotters where unable to identify the bodies by type were found dead. For large whales, whose numbers tend to be low due to size, low birth rates, and dietary requirements, that’s a very rapid mortality rate. As a comparison, all of 2014 only featured four large whale deaths in the Gulf of Alaska.

According to an official statement from NOAA:

“NOAA Fisheries scientists and partners are very concerned about the large number of whales stranding in the western Gulf of Alaska in recent months… To date, this brings the large whale strandings for this region to almost three times the historical average.”

Hot Blob’s Record Algae Bloom Suspected

Starting an official investigation of this odd large marine mammal mortality event shows that scientists are somewhat baffled about what could have caused the tragic deaths of these majestic creatures. But the scientists’ investigation is not absent a suspect. For the emergence of extraordinarily warm ocean water in a region where these whales live has been linked to a number of mass sea creature die offs.

This area — an expansive zone of 1 to 5 degree Celsius hotter than average surface waters — has been implicated in the mass death of starfish, in dolphin mortality events, in sea lion mortality and orphaning events, in sea otter deaths, in salmon deaths, and in the mass death of crabs and shellfish (see “Starving Sea Lion Pups and Liquified Starfish” and “Hot Pacific Ocean Runs Bloody“).

Hot Blob

(A combination of factors related to human-caused climate change have forced the Northeastern Pacific into a period of record warmth. First, sea ice recession in the Arctic has enabled the formation of warm ridges in the Jet Stream over this region. Second, ocean waters are globally hotter than they’ve been in at least 135 years. Third, a switch to positive PDO and El Nino in the Pacific has unlocked an unprecedented degree of ocean heat forced into Pacific waters by record strong trade winds throughout the 2000s. As a result, the typical positive PDO signal is amplified. In other words, as Dr. Kevin Trenberth has warned time and again, deep ocean warming is coming back to haunt us. Image source: NOAA/ESRL.)

Abnormally warm waters fertilized by the particulate fallout from fossil fuel based industry and climate change driven wildfires can create a host of problems for sea life. First, the warmer waters contain lower levels of oxygen — which reduces the range in which fish and crustaceans can live. Hotter, lower oxygen and zero oxygen waters also create zones and regions in which toxic microbial life thrive. We’ve talked a lot about the deadly hydrogen sulfide producing bacteria. But the expansive algae blooms of a warming, nutrient enriched ocean surface can produce a host of other toxins. Microcystins, Nodularins, Anatoxin-a, Cylindrospermopsins, Lyngbyatoxin-a, Saxitoxin, Lipopolysaccharides, Aplysiatoxins, BMAA, Hydrogen Sulfide Gas and Domoic Acid are just some of the toxins produced by algae and bacteria that thrive in warming waters, in low oxygen waters, or in waters that have been subject to high nutrient loading from increasing run-off and the fallout of nitrogen and particulates due to fossil fuel burning.

In particular, this year’s record red tide has resulted in an extreme outbreak of the kind of algae that produce the deadly neurotoxin — domoic acid.  And it’s this domoic acid poisoning that many are pointing to as a possible cause of excessive whale deaths.

Whale stranding locations

(Whale stranding locations along an abnormally warm Gulf of Alaska. Strandings may be associated to a global warming-tied blob of hot water in the Northeastern Pacific together with a related red tide algae bloom impacting the region. Image source: NOAA.)

The massive algae bloom impacting regions of the Northeast Pacific threatens whales in a number of ways. First, the whales swim in the algae-filled waters. So the toxin is a part of their environment. It thus becomes unavoidable. The toxin concentrates in the bodies of the tiny sea creatures upon which the whales feed — planktonic life forms that, in their turn, feed on the toxin-laden algae. As domoic acid moves up the food chain, it bio-magnifies — becoming more concentrated. And since whales must consume prodigious volumes of small sea life to survive, the opportunity for biomagnification of toxins in whales is great.

Biomagnification of domoic acid is also a threat to human beings. And it is for this reason that the US Fisheries Services have curtailed the consumption of West Coast shellfish, which can contain high concentrations of domoic acid from 2015’s record red tide.

Conditions in Context — Deadly Waters

Mass whale deaths and strandings along the Alaskan coastline have, over recent weeks, garnered a great deal of attention from the public. However, these strandings and deaths do not occur in isolation. The tragic and freakish mortality events are happening in a region of abnormally hot water. A region of hot water that scientists have linked to human-forced climate change. An area in which numerous other mass sea creature deaths have occurred.

The region features low oxygen waters. Waters infected by deadly microbes that have liquified starfish, crabs, and sea cucumbers. And waters that now feature the largest red tide — a massive bloom of toxic algae — on record. It should be very clear from all these related events occurring within the same region of abnormally hot water that a warming ocean is an increasingly deadly ocean. And if we are to have any hope of halting these events, we should look to cessation of fossil fuel burning and related human forced warming of the Earth System as rapidly as possible.

Links:

NOAA: Alaska Fisheries

NOAA/ESRL

Scientists Baffled by Mass Whale Death

Whales are Mysteriously Dying in Northeastern Pacific

Starving Sea Lion Pups and Liquified Starfish

Hot Pacific Ocean Runs Bloody

Hat Tip to Colorado Bob

Hat Tip to Andy in San Diego

(Please support public, non-special interest based, science like the fantastic efforts conducted by the fisheries and ocean researchers at NOAA.)

 

 

Tumbling Down the Rabbit Hole Toward a Second Great Dying? World Ocean Shows Signs of Coming Extinction.

The last time Earth experienced a Great Dying was during a dangerous transition from glaciation and to hothouse. We’re doing the same thing by burning fossil fuels today. And if we are sensitive to the lessons of our geological past, we’ll put a stop to it soon. Or else doesn’t even begin to characterize this necessary, moral choice.

*    *    *    *    *

The Great Dying of 252 million years ago began, as it does today, with a great burning and release of ancient carbon. The Siberian flood basalts erupted. Spilling lava over ancient coal beds, they dumped carbon into the air at a rate of around 1-2 billion tons per year. Greenhouse gasses built in the atmosphere and the world warmed. Glacier melt and episodes of increasingly violent rainfall over the single land mass — Pangaea — generated an ocean in which large volumes of fresh water pooled at the top. Because fresh water is less dense than salt water, it floats at the surface — creating a layer that is resistant to mixing with water at other levels.

Algae Blooms and Red Tides in the Stratified Ocean

This stratified ocean state began to cut the life-giving thread of the world’s great waters. Reduced mixing meant the great ocean currents slowed. Oxygen transport into the depths declined. Moreover, a constant rain of debris in the form of particulate matter from burning forests and nitrogen oxides from the smoldering coal beds fertilized the ocean surface. Food for algae also came from increasing continental run-off. And a spike in iron loading due to glacial melt added yet more fertilizer. Great microbial blooms covered the world ocean, painting its face neon green, blue, or blood red.

antarctic-algae-bloom-terra

(Stratified Ocean waters hosting massive algae blooms. It’s a combination that can quickly rob ocean waters of oxygen. During the Permian, a transition to stratified and then Canfield Ocean conditions led to the worst mass extinction event in the history of life on Earth. Today, the Southern Ocean’s waters are increasingly stratified due to glacial melt run-off of fresh water. In addition, these waters also host very large algae blooms like the ones seen above in a NASA satellite shot from 2012. Image source: NASA and Live Science.)

Rising CO2 levels increased ocean acidification even as the blooms spread toxins through the waters. When the blooms finally exhausted all the available food in their given region, they died off en masse. And by decay they further robbed the waters of life-giving oxygen. At this point the strains to ocean life became extreme and the first mass deaths began to occur. The stress opened pathways for disease. And the warming, de-oxygenating waters forced migrations to different Latitudinal zones and ocean depths. What life there was that couldn’t move, or couldn’t move fast enough died in place.

Transitioning to a Canfield Ocean

At first, ocean deaths appeared prominently in the bottom regions that saw the most rapid declines in oxygen levels and the swiftest increases in temperatures. For not only did the fresh water at the surface of the world’s oceans prevent mixing — it also prevented the oceans from ventilating heat into the air. Instead, the ocean heat was increasingly trapped at depth. Aiding this process of heat transport into the world’s deeps was a bottom water formation that issued from the hot Equator. There, evaporation at the surface increased saltiness. The heavier, hotter, saltier waters sank — carrying with them the Equatorial surface heat which they then delivered to the ocean bottom.

The hot, low oxygen bottom water became increasingly loaded with methane as the heat activated frozen stores. It created an environment where a nasty little set of primordial, hydrogen sulfide producing, creatures could thrive.  These little microbes cannot live in oxygen rich environments. But warm, anoxic bottom waters are more like the ancient environments from which they emerged. Times long past when the world was ruled by microbes in conditions that were simply deadly to the more complex and cold-loving life forms of later times. To most life, the hydrogen sulfide gas produced by these little monsters is a deadly toxin.

Ancient ocean conditions

(Oxygen, iron and hydrogen sulfide content of the world’s oceans over the past 4 billion years. Ancient oceans were hotter than today. They were rich in iron and densely populated with hydrogen sulfide producing bacteria. They were also anoxic. During hothouse events, oceans can again lapse into these ancient ocean states. Called Canfield Ocean environments and named after Dr. Donald Canfield who discovered them, these states are extremely deadly to ocean life. If they become too deeply entrenched, Canfield Oceans can also transform the global atmosphere, resulting in extinctions of land animals as well. Such an event was thought to be the primary killing mechanism during the Permian Extinction. Image source: Nature.)

The rotten-eggs stinking, hydrogen sulfide filled waters at first did their dirty work in silence at the bottom of the warming world ocean. But, steadily, anoxia progressed upward, providing pathways for the hydrogen sulfide producing bacteria to fill up the oceans. Death expanded from the bottom toward the surface.

In all the great mass extinction events but, possibly, one, this heat-driven filling up of the world ocean with deadly hydrogen sulfide gas during hothouse periods represents the major killing mechanism. The other impacts of hothouse waters — ocean acidification and habitat displacement — do provide killing stresses. But the combined zero oxygen environment filled with a deadly gas generates zones of near absolute death in which few things but microbes and jellyfish can live. In rock strata, the anoxic, zones are marked by regions of black as the hydrogen sulfide producing bacteria-filled waters eventually take on the color of tar. In the lesser extinctions, these black zones are confined to the lower ocean levels. In the greater ones, they rise higher and higher.

During the Great Dying, the oceans brimmed full of the stuff. Black, purple and neon green waters bubbled to the surface to belch their lethal loads of hydrogen sulfide gas into the airs. The gas was deadly toxic to land plants and animals alike. And it eventually wafted into the skies, turning it from blue to green and eating away at the protective ozone layer.

In this terrible way, more than 99 percent of all living things were killed off. Of species, about 95 percent of ocean forms were lost with around 80 percent of the land forms being wiped out.

Early Signs of a New Ocean Extinction

The Great Dying of the Permian Extinction 200 million years ago should be a warning to anyone still enamored with the notion that today’s terrifying fossil fuel burning results in any future that is not horrible, wretched, bleak. Today, we dump 11 billion tons of carbon into the air each year — at least six times faster than during the Great Dying. Today, the great melting glaciers are beginning the painful process of ocean death by spreading out their films of stratifying, iron-loaded fresh water. Today fossil fuel industry, industrial farming and warming all together are fertilizing the ocean surface with nitrous oxides, particulates, phosphates flushed down rivers, and an overall increased runoff due to a multiplication of extreme rainfall events.

(The hot blob in the Pacific Ocean is setting off the largest red tide on record. Just one of many dangerous impacts to sea life due to this large region of abnormally warm water.)

And the impacts are visible to anyone who cares to look. In the Pacific Ocean, a climate change related blob of hot water is resulting in mass ocean creature die offs. Low oxygen waters beneath the blob are wrecking large zones of ocean productivity and risking the proliferation of deadly hydrogen sulfide producing bacteria. The largest red tide on record has spun off the hot blob. Covering waters 40 miles wide and 600 feet deep, it has left piles and piles of dead shellfish rotting on beaches across the North American West Coast.

Across the Continent, the Chesapeake Bay suffers a proliferation of dead zones and greatly reduced productivity. There’s a rising risk that, during coming years, increased warming will deliver a heavy blow to life in the Bay and turn one of the world’s greatest estuaries into a large hydrogen sulfide production zone similar to the Baltic Sea. In the Gulf of Mexico, a similar dead zone emerges near the outlet of the Mississippi. And out in the Atlantic Ocean, mobile dead zones now swirl providing a roving surface hazard to both the deep open waters and to the coastal regions that now sit in the firing line.

In the Arctic, recently ice-freed waters are now the host of massive blue and green Algae blooms.

Barent Algae Bloom July 2015

(Large blue and green algae bloom covering the southern Barents Sea during late July of 2015. Large algae blooms are now a frequent feature of previously ice covered waters in a warming Arctic. Image source: LANCE-MODIS.)

Ever since the mid 2000s a massive algae bloom like the one pictured above has dominated the Barents Sea during summer time. Often running as deep as 400 feet, this sprawling mat can rapidly deplete northern waters of vitalizing oxygen and result in mass fish kills. Waters around Greenland, in the East Siberian Sea, the Chukchi, and the Beaufort have also hosted large, and potentially ocean-health threatening algae blooms.

And, in the polynyas and open waters off a melting Antarctica, massive algae blooms are also starting to form. Some of the blooms are so dense they emit a nasty rotten-eggs smell — a sign that sulfide producing bacteria may already be active in some of these waters. Fed by iron from melting glaciers, these immense blooms represent rapid explosions of life that can equally rapidly deplete waters of nutrients and then oxygen as they die off.

The blooms and the related expanding, low oxygen dead zones now range the entire world ocean. And where we see the red, the neon green, the cloudy light blue what we see are the signs of another ocean extinction in the making. An extinction that is likely building faster than at any time in the geological past. But we may still be able to avoid another great dying. The amount of carbon we’ve emitted into the world’s airs is immense, but it is still but a fraction of the carbon explosion that resulted in the Permian die-off. It is still a tiny fraction of the carbon that remains in the ground. The carbon that could be burned but shouldn’t. And a rapid cessation of fossil fuel burning now should, hopefully, be enough to prevent another hothouse spurred great dying in the oceans and upon the lands.

As for continued burning of fossil fuels — that results in ever greater risk of unleashing the horrors of the ancient hothouse. A set of now stirring monsters that we should carefully allow to fall back into slumber — leaving them to rest in dreams of the great long ago where they belong.

Links:

A Deadly Climb From Glaciation to Hothouse: Why the Permian-Triassic Extinction is Relevant to Current Warming

Antarctic Glaciers are Loading the Southern Ocean Up With Iron (Not the Good News Some Are Making it Out to Be)

Large Algae Blooms off Antarctica

Under A Green Sky

Awakening the Horrors of the Ancient Hothouse

Canfield Oceans

Nature

K-T Extinction — Impact or Hothouse Caused?

Climate Change Happening Faster Than Scientists Predicted

How Global Warming Sets off Extreme Weather

Hot Pacific Ocean Runs Bloody

Pacific Algae Bloom is The Biggest Red Tide We’ve Ever Seen

Chesapeake Bay Dead Zones

The Atlantic Ocean’s Whirlpool Dead Zones

LANCE-MODIS

%d bloggers like this: