Possible Record Methane Spike at Barrow, Alaska — What Does it Mean?

There’s no avoiding it — climate change is a controversial subject; a threat that should unify us all that, due to reticence, denial, fear, and a basic lack of understanding, is instead often quite divisive. But among the subjects that stand out as real fodder for acidic controversy, the issue of methane feedbacks from the global climate system — the oceans, thawing permafrost, and especially the Arctic — is one of the worst. There’s a noted tendency to either downplay or overplay risks. Though this polarization is likely fed by the general mysteriousness and complexity of the subject, its potential existential nature also feeds into the heat that methane feedback-related discussions tend to draw.

It all makes one hope for improved discussion on the subject. Given the fact that catastrophic methane feedback appears unlikely (but would have a high overall impact if it did emerge), it’s probable that the subject will continue to generate a difficult conversation for as long as human-forced warming is an issue, and so long as the science continues to remain uncertain.


(The Copernicus Observatory shows surface methane hot spots in China, Africa, South America, the U.S., Canada, Europe, Russia and the Arctic. Note that generally high concentrations still tend to center over the Arctic. Meanwhile, the various hot spots seem to indicate major sources like fossil-fuel industry wildfires, wetlands, droughts, the Arctic Ocean and glacial and permafrost thaw. Also note that current readings indicate a serious rise in global methane concentrations, but not a spike that significantly exceeds peak 20th-century additions. It’s worth considering that, during recent years, expanded natural gas exploration and extraction through fracking has likely contributed a substantial new human methane source addition to the global atmosphere. Meanwhile, there is some concern that the Earth System may be starting to mildly feed back by bleeding additional carbon from warming lands, forests, oceans and permafrost.)

It’s not really a question of whether or not some scientists are concerned or if there is a risk, however ill-defined. Dr. James Hansen has often indicated that a strong methane feedback from the Arctic or world ocean system would be a climate nightmare that could well eliminate the time window to respond to prevent catastrophic warming. Methane and other carbon feedbacks are prime suspects for past hothouse event triggers — potentially playing a role in setting off events like the Permian-Triassic Extinction and/or greatly contributing to the loss of ocean health that was a key feature of these extinction events. Neil deGrasse Tyson alluded to this risk in his 2014 rerendering of the science series Cosmos.

Polar researchers, including those at the National Snow and Ice Data Center (NSIDC), often point to varying risks and potentials for methane feedback from numerous sources such as permafrost thaw. Others fear releases coming from seabed stores — claims that often meet stiff resistance from more established areas of the science. But given how close we are to locking in 2-degree-Celsius or greater amounts of warming this century, it doesn’t take a lot of carbon feedback, methane or otherwise, from the Earth System to generate a problem. Even a moderate feedback would cut the time necessary for carbon emissions draw-downs. It is for this reason that monitoring of the methane, and overall carbon feedback, situation is a necessary part of developing a comprehensive climate change situational awareness (which I have worked hard to develop here at this blog). Which is why, today, we are going to talk a little bit about a big methane spike appearing in the hourly readings near Barrow, Alaska.

Apparent Record Methane Spike in the Hourly Readings at Barrow

Yesterday, climatologist Brian Brettschneider, whose Twitter feed provides a good stream of informed climate change-related updates, posted a truncated version of this NOAA ESRL graph:


The graph tracks hourly methane readings at the data collection location for Barrow, Alaska. As shown, the recent (and unconfirmed) data set shows what appears to be a record methane spike for that location. Also note that big spikes appear in the hourly data at certain points many times since 2000, as is typical during this time of year. Most notably, a similar very large spike occurred in 2004, one that the recent 2016 spike just edges out.

Looking at the graph, there’s a lot that it doesn’t tell us. Firstly, what is the source of this methane spike? If the spike was an outlier with no periodicity it might indicate the potential for some kind of anomaly or human source. However, since seasonal spikes seem to show up in this graph, this hints that the current spike is environmental. In addition, since Alaska as a whole and Barrow in particular both recently experienced some of their warmest weather on record, there’s some reason to suspect that this added heat played a part in the 2016 spike. And, 2004 also saw a period of then-record warmth during summer in Alaska. So Alaska warming is in line as a suspect cause for the 2016 methane spike.

As anomalous spikes go, this one is pretty big — it apparently set a new hourly record methane reading around 2370 parts per billion for the recording station. But since this Barrow spike isn’t visibly part of some big regional methane plume and since the global monitors aren’t recording a big methane jump as well, we can be pretty certain that this particular spike, if confirmed, is a local and probable short-term issue, and not a sudden, huge methane release issue of global importance. However, it does represent another point in a context that seems to include some big local methane sources popping up in the Arctic environment and possibly indicating a larger, if comparatively moderate, regional feedback taking place in response to the warming and thawing ongoing there. (No consensus scientific study has yet fully confirmed such a preliminary observation, which is a threat analysis-based potential identification on my part.)

So, overall, something to add to the big pot of bubbling concerns — but nothing to light your hair on fire over yet.

Conditions in Context

During the 20th century, large-scale industrialization linked to fossil-fuel burning and extraction helped to drive rapid rates of atmospheric methane increase. These rates peaked during the late 1980s and early 1990s when global policy measures helped curtail methane leakage from fossil fuel infrastructure. According to NOAA, annual rates of global atmospheric methane increase peaked in 1991 at a 14.32 ppb yearly jump.


(Global methane is again hitting a rapid rate of rise. Though the Earth System appears to be providing some ominous rumblings that feedbacks may be on the way, the present spike is likely primarily due to increased fossil-fuel extraction activity, particularly due to fracking. Image source: NOAA.)

Such curtailments helped to produce a mid-1990s to mid-2000s plateau in the rate of atmospheric methane accumulation. Now, with the advent of fracking and with global warming appearing to generate a number of possible new methane sources (or amplify traditional sources) from the Earth System, rates of annual methane increase are again on the rise. In 2014 and 2015, annual increases hit 12.53 ppb (the third highest annual rate of increase in the NOAA record) and 10.07 ppb respectively (tenth highest). Preliminary reports show that 2016 appears to be on track to hit near 10 ppb worth of atmospheric increase.

As a result, it appears that fracking, primarily, and warming-related feedback (possibly secondarily) are contributing to annual rates of atmospheric methane increase that are comparable to peak periods of increase during the late 1980s and early 1990s. However, these rates of increase, though significantly adding a heat forcing that about equals one quarter to one third of the annual CO2 addition, show no current indication of a catastrophic rate of methane increase that would point toward the major environmental releases some have feared. As such, the greatest part of our ability to currently prevent further rising rates of atmospheric methane comes in the form of rapidly reducing all fossil fuel use and particularly to contain and reduce coal mining and oil and natural gas fracking. And if we do that, there will be less heat stress on the environmental methane stores and less overall long-term pressure for the kinds of feedbacks some of us have come to fear.



All About Frozen Ground

The Arctic Turns Ugly

Hydrate Catastrophe Unlikely

The Copernicus Observatory

Brian Brettschneider

Toward Improved Discussions: Methane

An Update on Fracking Emissions


Hat tip to Griffin

James Hansen and the Three Categories of the Runaway Greenhouse: Earth Uninhabitable for Humans at ~5,000 Gigatons Fossil Fuel Burned

Runaway Global Warming

The Arctic’s Contribution to Runaway Global Warming (hypothetical worst-case runaway) . The above image provides a potential worst-case scenario for amplifying Arctic methane feedbacks to human-caused climate change. James Hansen’s research shows that a mini-runaway, pushing global temperatures to 10-12 degrees C above the Holocene, is all but certain under continuous, business as usual, fossil fuel burning through 2100. It is important to note that the current non CO2 forcing is equal to about 1/3 of the total CO2 forcing and that atmospheric methane releases are at 1/20th the level we would see during a runaway of the kind depicted in this image.

( Image source: Arctic News)

Forget for a moment that we can still emit about 530 gigatons of CO2 and still keep human warming in the ‘safe range’ of less than 2 degrees (Celsius) temperature increases this century. Forget for a moment how important to the sustenance of human civilization and the prevention of ever-worsening conditions this strict limit on carbon emissions is. Now think for a moment what will happen if Republicans in Congress and fellow conservatives aligned with fossil fuel companies across the country and around the world get their way.

In the past month, Republicans in the House of Representatives have pushed to increase US coal burning, approve the Tar Sands Keyston XL Pipeline, remove energy efficiency standards, and to slash US government (ARPA -E) R&D funding for new renewable energy technology by 80 percent. Fully 55% of all Republicans in the US Congress deny that human caused warming even exists. And the rest clearly are deluded enough to believe that it represents the climate version of a mild summer storm. Their legislative action over the past month, the past year, and for many years following that has been to enforce US dependence on oil, gas, and coal and to delay, diffuse and deny US access to new energy sources that may effectively serve as their replacements. And the millions of dollars in oil, gas and coal company largess they enjoy in the form of contributions is just the final proof that these members aren’t working for the best interests of the American people. They’re working for the international corporate state called Big Oil (BO).

So let’s consider for a moment what would happen if these BO lackeys in Congress were successful in their efforts to kill off alternative energy, to remove efficiency standards, and to shackle the US Energy future to Tar Sands, Coal, and Fracked Shale Oil and Gas.

What would happen?

It’s difficult to argue, given the current extreme and worsening state of the world’s climate, that blind Republican attempts to enforce dependence on BO would result in much in the way of US prosperity. It, essentially, would turn the entire North American Continent into a giant petro-state. It is possible that, for some years, the US will make some energy independence gains, possibly removing a larger fraction of imports from most states except Canada. But the loss of efficiency standards would do ongoing damage by increasing consumption of high-cost unconventional fuels, which would put a drag on the economy. The even greater drag would come from shackling US and North American economies to ever greater degrees to fuel sources, at best, that create a 6 to 1 energy return, where wind and solar could have supplied between 10 and 20 to 1 at ever-lower costs.

Worse still, is the fact that US and Canadian carbon emissions would go through the roof. Tar Sands, Coal, and Tight Shale Fracking are three horsemen of the apocalypse when it comes to climate change change (the fourth being fossil fuel company greed). Coal has always been the worst emitter. But both Tar Sands and Tight Shale Fracking are not far behind. The Republicans would have us depend on these, arguably vast, unconventional sources to the exclusion of all others. They wouldn’t care one whit about capturing the carbon (costs too much and reduces the energy return on already low energy fuels). And, adding yet one more insult, they allow BO to export the fracking and tar sands technologies to other countries consigning them and the world to similar fates.

Total carbon emissions in 2012 (including non CO2 sources) was 45 gigatons. But on the path Republicans set, this level of emission will look minor. Peak emissions would probably pair with peak human civilization at some time around 2050 near 80-90 gigatons per year. At this point, emissions are put in check by mother nature’s outrage at our insults. By 2050, the ‘burn everything’ strategy put in place by Republicans and enforced by conservatives around the world has resulted in near 600 ppm atmospheric CO2. Life in the oceans is in terminal collapse, major cities and island nations are being devoured by a combination of powerful storms and rising seas. The coastlines, for so long productive, have become unstable. And large regions of once fertile land are now being devoured by deserts. Water stress has caused entire countries to collapse. Mass migrations from both the coastlines and from desertified regions has already set in. Human population peaks at about this time near 10 billion.

But over the next 50 years humans maintain enough vestige of prior fossil-fuel based civilization to keep burning. They expend massive efforts to encircle coastal cities with walls. They try to farm indoors more and more. Miami is placed on giant oil platforms (we have more than enough in surplus) whose bases are driven into the limestone beneath the city. The New Orleans’ tidal wall is heightened to 30 feet. New York and the all important Wall Street is surrounded by increasingly high flood barricades. But the massive storms of this age are freakish, wrecking entire regions and knocking out power for weeks to months. Storms and heatwaves kill millions each year and millions more are rendered homeless. Entire countries collapse for want of food or under a tide of refugees they cannot support.

By 2100, CO2 is at 1000 ppm and global temperatures are 7 degrees (Celsius) hotter. Fossil fuel based industry has emitted about 5,000 gigatons of carbon, enough to set off the stages for a mini runaway global warming scenario (Category 1). Sea levels have risen 12 feet and Earth’s population has been reduced to 6 billion. 40% of ocean species are extinct and 10% of land species have suffered the same fate. Summer time results in the emergence of large heat death zones experiencing wet bulb temperatures in excess of 35 degrees Celsius (hot enough to kill most large mammals, including humans, through heat stress alone). Even if all emissions ceased, global temperatures would still rise to around 12-14 degrees Celsius hotter than the Holocene. There is almost no chance, in this case, for human civilization to survive such an insult for more than another 50-100 years. And the chances for humans, long term, are dire indeed.

But the world’s fossil fuel companies are still around, still clawing coal, fracked oil and gas, tar sands, oil shale, and methane hydrates  from the Earth with whatever new high tech process they’ve invented. These manage to survive for another 50 years or so selling off enough dirty fuels to set world CO2 levels to 1500 ppm. And that’s when game over really sets in for just about everything that can’t run to a high mountain range.

Fossil fuel based industry had managed to survive just long enough to emit more than 8,000 gigatons of carbon into the atmosphere. Just long enough to kill off the rest of us and themselves too.

Three Categories of Runaway Warming

The above scenario isn’t science fiction. According to some hard science done by the world’s top climate scientists, it is entirely likely if Republican burn, baby burn policy and the fossil fuel companies that push it survive in their current forms for much longer.

Hansen’s new paper is a more in depth study of Earth Systems Climate Sensitivity to a given level of CO2 forcing. The study looks, with greater detail, into both how much Earth will warm, long term, given a certain level of CO2 emission and how much of this emission is required to set off one of three categories of a runaway greenhouse.

In a less than ideal scenario, Hansen investigates what will happen if we burn all or nearly all the fossil fuels currently included in the unconventional reserves. All, or nearly all, according to Hansen represents between 5,000 to 10,000 gigatons of carbon equivalent fuels. Chillingly, if we tap the most extreme sources, such as methane hydrates, that number could rocket to 20,000 gigatons or more. So even Hansen’s study isn’t an extreme worst case.

Category 1: The Mini-Runaway

The Hansen paper finds that burning between 3,500 and 6,500 gigatons of carbon based fuels is enough to raise world CO2 levels to between 800 and 1200 parts per million. This level of CO2 would set up climate conditions similar to those experienced during the Paleocene-Eocene Thermal Maximum (PETM) in which temperatures were between 10 and 12 degrees Celsius hotter (average) than today.

Hansen finds that this level renders much of the Earth mostly uninhabitable for humans. Hansen notes:

Earth was 10-12 °C warmer than today in the early Eocene and at the peak of the PETM (Fig. 4). How did mammals survive that warmth? Some mammals have higher internal temperatures than humans and there is evidence of evolution of surface-area-to-mass ratio to aid heat dissipation, e.g., transient dwarfing of mammals (Alroy et al., 2000) and even soil fauna (Smith et al., 2004)during the PETM warming. However, human-made warming will occur in a few centuries, as opposed to several millennia in the PETM, thus providing little opportunity for evolutionary dwarfism to alleviate impacts of global warming. We conclude that the large climate change from burning all fossil fuels would threaten the biological health and survival of humanity, making policies that rely substantially on adaptation inadequate.

It is also worth noting that much of the world’s land masses would experience average summer temperatures above the mammal-killing level of 35 degrees Celsius (wet bulb) in a PETM-like world. The added heat of this regime would swiftly soften and obliterate any ice on the planet. But given the killing heat and a hydrological cycle driving droughts and rainfall events that are 80% more extreme, a rapid sea level rise of 200+ feet would likely come as a harsh afterthought. (To this point, it is worth mentioning that most planetary ice disappears when CO2 levels hit and maintain between 500 and 620 parts per million over a number of centuries).

Nearly all climate scientists agree that a return to PETM conditions and CO2 levels, especially on so short a time-scale would be a mass extinction event on the land and in the ocean. Which is why policies that extend the burning of fossil fuels combine the travesties of ecocide, genocide, and suicide in equal measures and to ever greater degrees as time moves forward.

Category 2: The Moist Stratosphere Runaway

If the fossil fuel companies manage to stick around long enough, they may be able to burn through between 8,000 and 15,000 gigatons of additional carbon-based fuels. Such an event would almost certainly spell the end for human beings and probably most of the complex life on Earth as well.

In such a situation, average global temperatures rise by between 15 and 20 degrees Celsius. A 15 degree Celsius temperature rise increases temperatures over land by around 20 degrees C. This puts Earth’s average land temperatures at around 35 degrees Celsius with average daily (wet bulb) highs in the range that is hot enough to kill humans. The entire Earth, in this case, is an enormous human killing field.

The only regions able to even marginally support human life or agriculture would be the high mountains. But even these regions would be under threat. Global heating of around 15 degrees Celsius or greater would pump ever greater levels of moisture into the stratosphere. The added H20 would substantially degrade stratospheric ozone. The added UV radiation would severely hamper both plant and animal life in the remaining habitable regions. Human food crops are highly sensitive to excess UV radiation. So it is seriously doubtful if humans could continue cultivation even on the Himalayan Plateau during a Category 2 Runaway.

Category 3: Evaporated Oceans, Baked Crusts

Thankfully, even the fossil fuel companies aren’t likely to bring about even the worst of the climate change nightmares — Earth transitioning to a state more like Venus. In order to do that, global heating would have to evaporate all of Earth’s oceans and then bake the remaining carbon out of the Earth’s crust. According to new models constructed by Hansen, such conditions would take between 100 million and one billion years to develop. Hansen’s models also show that climate sensitivity is not enough, at the higher CO2 levels, to finally set off the kind of runaway that would force such catastrophic events to occur.

That said, the first two categories of global warming runaway are well within the reach of current fossil fuel reserves. And the fact that all fossil fuel companies are doing everything they can to burn all the reserves on their books and to find ever greater quantities of these fuels is not at all comforting, especially when they have a number of hired trolls in Congress and elsewhere (Republicans) to do their dirty work for them…


New Hansen Paper on Climate Sensitivity, CO2 and Sea Level Rise

%d bloggers like this: