How I Used Rideshare to Afford a Tesla Model 3 (You Can Do it Too)

So I’ve got a bit of a background in the field of emerging threats — both as a former military intel analyst and as an editor at Janes Information Group back in the early 2000s. And, in my opinion, the biggest threat facing civilization today is a twofold crisis.

Climate Change and the Failure to Use Clean Energy Crisis

We could easily call this crisis climate change — because these are the effects we see around us in the form of melting glaciers, changing seasonal weather patterns, rising seas and more extreme weather. We could easily call it global warming. Because net energy gain through heat trapping gas increase in the atmosphere is causing the Earth System to warm up.

But that’s just the first side of the problem. The ‘what’s happening’ side. The other side of the problem is systemic. It’s also cultural to a certain extent. And it mainly has to do with how we presently use energy to drive a massive global economic system that supports most of the 7 billion people living on the Earth. More importantly, the driver of the vast majority of the global warming we see (in the range of 80 percent or more) is the direct carbon emission coming from fossil fuel burning and extraction. About thirteen billion tons of heat-trapping carbon comes from this primary source and enters the atmosphere each year.

You could also call the climate crisis a harmful energy crisis. But that misses a bit of the story as well. For back during the 20th Century, competing clean energy sources failed to move to the fore. We knew how to generate energy from the sun and from the wind in a carbon-free manner. And we knew how to store that energy. But, mainly due to the fact that the fossil fuel interests held more political and economic power, these clean energy sources got sidelined. Bringing us to the final way that we could characterize this crisis — the failure to use clean energy crisis.

Setting an Individual Policy for Climate Action

It’s at this point in the discussion that we come down to little ol’ me. What’s my level of responsibility? What can I do as a person to help correct this problem. To not contribute to the failure to use clean energy crisis?

IMG_2493

(Optimized for zero emissions. My clean energy Tesla [Clean KITT] recharging at a local solar garage. Planning to purchase a Tesla that’s capable of sucking energy direct from the sun? Get up to 5,000 free supercharger miles through this link.)

This has been a big issue for me for some time. I don’t make a huge amount of money. I’m a writer after all. And my wife works for a not-for-profit. Sure, we are probably better off than some. But when it comes to being able to produce the capital to access 40,000 dollar electric vehicles, or a home where I can charge it in the garage, or the 20,000 dollar plus for solar panels and the other 7,000 dollars or so for energy storage at home, all that stuff may as well have been on the moon with me waiting for an Elon Musk rocket to get me there.

Sure the costs had come down. And sure clean energy was more accessible to me than it was before. But it wasn’t accessible enough. I needed just a little extra push to start to get there.

In all honesty, I really wanted to make the push. As a climate change blogger, I’ve been harassed by anti-clean energy trolls for the better part of 7 years. And you can say what you want, but proving trolls wrong can be a powerful motivator. So I wondered what I could do personally to generate enough capital to afford a primary clean energy platform.

I’m getting a little ahead of myself here. So I’ll just step back and put you in my place during fall of last year. Then, I was looking at a way to individually make a difference for climate change. Sure, we all need to support climate change response policies like Paris, and the Green New Deal. And we, as societies, need to escalate those policies pretty quick if we’re gonna have a real Extinction Rebellion. But as people and individuals, there are things we can do as well to try to correct our failure to use clean energy crisis. We can set our own personal climate policies in place.

For my part, I set a goal to be carbon neutral by 2025. And as a first step, I settled on getting an electric vehicle. I figured I could cut my family carbon emissions on net by about 2 tons per year including all the typical travel my wife and I engage in. But when I started to think about how I could afford something in the range of 35,000 to 40,000 dollars, I stumbled on the notion of rideshare.

Streetfighting Against Climate Change

You see, a local buddy of mine had been Ubering — even as he worked full time as an electrician. He told me that Uber was really flexible (if you decide to rideshare for clean energy, you can help this blog by using my referral code robertf30288ue). Your work hours were entirely yours to control and there was no commute except for the walk out to your car. I decided to look into it. And after a little research, I found that the average income for an Uber driver in D.C. was just short of 20 dollars per hour.

Now you may be smirking at me through your fingers. For a lot of people, 20 bucks an hour isn’t really much at all. But you have to remember that I’m working from a blogger’s/writer’s baseline that is rather short of that. And if I could somehow combine my writing income with an extra 25-30 hours of Uber income, I could make about 2,000 to 2,500 extra each month. This would be more than enough to cover the cost of a new, long-range electric vehicle.

(Paying for a Tesla using rideshare.)

The idea to then rideshare with the EV to multiply my clean energy system usage was a natural follow-on from this notion. Elon Musk had always talked about a master plan to use vehicle autonomy to achieve this kind of clean energy access multiplication on a mass scale. But what if I could use my basic human gumption to accelerate the process by a year or two or three even as I helped to make the local public more aware of how badass clean energy vehicles had become?

By this point, I had a plan. As many of you who have attempted difficult or ambitious plans before know, the major step is not coming up with a decent idea. It’s executing it. So I set out to, for lack of a better phrase, start busting my tail. This meant that I had to temporarily let go of some of my less lucrative work. Those of you who frequent this blog will attest to the fact that I went dark for a number of months. Mia Culpa! But contrary to one of about a bazillion climate change denier memes — those of us who communicate on the issue of climate change all-too-often don’t make minimum wage back for our time.

So I went dark and worked hard. In doing so, I met a lot of people. And aside from the odd Heritage Foundation pick-up (yes we Uber drivers pick up political org folks in D.C.), I’d say 95 percent of the people I talked to about my project were both concerned about climate change and interested in clean energy advancement. In other words, they were supportive of my goal. Plus they were also pretty geeked out about the potential notion of riding Uber in a Tesla.

As I drove, I also became keenly aware of how expensive it was to operate even an efficient internal combustion engine vehicle like a Hyundai Elantra. The cost of gas alone increased for me by about 250 dollars per month. Add in the new 50 dollar monthly oil change, and I began to get an understanding of how much an electric vehicle could save me later (more on this in a future blog).

How You Can Raise Funds for a Clean Energy Vehicle Through Rideshare

Long story short, after busting my tail, I had enough funds to afford a clean energy vehicle by April. I did this by using the rideshare app Uber. And by saving a portion of the profits to invest in a Tesla Model 3. I have now driven 800 miles in this clean machine. Like so many EV converts, I am never going back.

It is here that we get to the nitty-gritty of this post. How can you make enough money to afford a Tesla Model 3 if you’re strapped for cash like I was? One way is to do what I did — use Uber or Lyft part-time and save the profits for an EV purchase a few months down the road. This works well if you can set aside an extra 10 hours or more per week. And if you have the time, then fantastic! I recommend you give it a shot if you want to gain access to the amazing piece of clean tech that is the Tesla Model 3 and help fight climate change in one go.

Uber destination trips

(Uber destination trips allow you to pick up riders and earn money through the app while driving to and from work. This is a great way to optimize time and earn money for a clean energy vehicle. Image source: Uber.)

Many of us do not have an extra 10 hours a week or more, though. So I’m going to make this additional time optimization suggestion for rideshare usage to purchase a clean energy vehicle. And this suggestion includes the nifty little Uber feature called destination trips. What the destination trips feature allows you to do as an Uber driver is to set a way-point, drive to that way-point, and take trips toward that destination as you drive.

If you’re a regular office worker type, who makes a long drive to work and back, this has huge potential benefits. What it can allow you to do is turn your regular daily commute into a money-making endeavor. Just log into Uber in the morning, set your way-point to your office, drive the usual rush hour drive, and pick up a few rides in on the way to work. You’ll make about 15-20 dollars or more in an average rush. On the ride home, repeat. Now you’ve got an extra 150-200 dollars per week in your pocket to work with. Counting in future gas saved, that’s more than enough to cover the monthly payment on a Tesla Model 3 SR+.

Full disclosure, this will probably increase the time it takes to get to and from work. So plan accordingly. However, all the time during the work commute has now become gainful employment in the service of the clean energy transition. Nice! Of course, if you have a short commute, then such a plan is less optimal. But for our long commuters, this optimization will both enable you to make money while commuting and turn the tables on typical transport energy usage to fight climate change.

Not too shabby!

Now I know that I haven’t provided every little detail in my post. So if you have any questions about how to employ rideshare to help you purchase a clean energy vehicle and get you off the fossil fuel pollution wagon, I will be regularly checking the comments section below. So feel free to ask any question that you might have.

Thanks so much for stopping in! For the next blog post, I’ll be talking about Arctic sea ice as we haven’t had an update on that subject here in a while. Kindest regards to you all! And if you want a riddle for a near future blog post/Radio Ecoshock interview topic it’s a word with a hidden meaning: Lucina.

Advertisement

Best EV Charging Options for Rideshare and Personal Use?

In this more difficult present life, we confront the problems caused by human-forced climate change on a daily basis. And over the past week, midwest flooding resulting in more than a billion dollars in damages with multiple communities disrupted is just the most recent example.

It’s the same kind of persistent extreme weather pattern that many scientists warned was likely to emerge as the Earth warmed into the present range of around 1-1.2 C above 1880s averages. And it’s just one aspect of a crisis brought about by fossil fuel burning that we are all presently called to fight.

(According to NASA, February of 2019 was the third hottest such month in the 139 year climate record. Global temperatures ranging around 1.14 C above average are presently tipping the scale toward more extreme climate change related events. This situation keeps getting worse if we continue to burn fossil fuels. Image source: NASA.)

My personal project in response to this crisis at present is to transition to clean transportation and to share it with others through rideshare technology. And last week many of you helped me to make a first step toward that response. Thank you! The votes are in and most of you appear to favor the Tesla Model 3 vs Nissan Leaf Long Range, the Chevy Bolt, and the Hyundai Kona/Kia Niro (see the results of last week’s poll here).

Before I make my final choice, I’d like to take a look at one last criteria — available charging infrastructure. For my part, I’ve got an added challenge. I do not presently have the ability to charge at home. So I need to be able to access a public or work charging station in order to charge my clean ride. I think a good number of people are probably in the same situation.

(A video walk-through of clean vehicle charging options for climate change response.)

For the work piece, I work at home. So no dice. But luckily for me the sweetie (my wife — Cat) works at the Humane Society of the U.S. which does provide a work charging station. Use of that charging station during her work hours alone would enable me to charge the Tesla for both rideshare and personal use through a level 2 charger (240 outlet and J1772). To practically use this I would probably have to rotate use of my ICE — giving me about 2/3 clean ride coverage. That’s doable, but not ideal. A more perfect method would be to purchase two electric vehicles and rotate those through Cat’s work charger. But, at present, we don’t have the funds for such an endeavor.

As a result, I’m going to have to access public charging infrastructure to fill the gap if I want to maximize my clean riding time. Thankfully, there’s an app called Plugshare which provides a great deal of information about charging infrastructure across the U.S. and around the world. If you’re interested in getting an EV but are anxious about charging — I encourage you to check it out. Very helpful!

According to Plugshare, here in Gaithersburg, there’s a huge number of public chargers. Many of these are nearby.

(My home community of Gaithersburg supports numerous electric vehicle charging stations. Level 2 chargers are shown in green and fast chargers are shown in orange [not origin ;)]. Image source: Plugshare.)

If you look at the above image you’ll see a map of the Gaithersburg area covered in green and orange images. The green images indicate level 2 charging stations which are capable of providing between 15-30 miles worth of vehicle range per hour. The orange images indicate fast chargers which are capable of near full recharge in between 35 minutes to one hour and fifteen minutes. Thankfully, my home location in Gaithersburg is within 1-2 blocks of three level 2 charging stations. Two of these stations cost around 45 cents per kilowatt — which is comparable to present gas prices. Not ideal, but decent in a pinch. One of these stations is free.

So, already, looking at both Plugshare and work options, I have potential access to two free charging stations and two pay stations in rather convenient locations. Pretty cool. Now for the next step — fast charging. And here is where we start to differentiate between electric vehicles. For this evaluation, we will compare between Tesla Model 3 and all the rest. The reason? Chiefly that Tesla has its own massive national network of Superchargers.

The rest — Bolt, Leaf, Kona, Niro — are presently beholden to 50 kW charging in my area. This is due to internal vehicle fast charging ability and due to rated chargers nearby. Networks like CHAdeMO, EVgo, and Charge America, provide 5 such fast chargers within five miles of my home location. Pretty wide coverage and much better options than I’d originally anticipated. But not the same as…

(The Tesla Supercharger network of 12,888 chargers at 1,441 stations across North America provides a major, high tech support for clean energy drivers. Image source: Tesla.)

For Tesla we have the nearby Rio Supercharger which provides up to 120 kW charging at 12 stalls. Such chargers are about 1.5 to 2.5 times faster than the other fast chargers. And soon these chargers will be upgraded to the version 3 — which is rated at 250 kW. It’s worth noting that I couldn’t use this Supercharging station while ridesharing. However, fair use would let me Supercharge my clean energy vehicle 1-2 times per week here at the going rate of 28 to 32 cents per kilowatt. About 40 percent less than gas. Impressive, most impressive!

It’s worth noting that different vehicles are charged by different plugs. And, in total there are at least five plugs available. So any electric vehicle will probably need adapters to access the wider EV charging network. In general, though, most non Tesla vehicles can access non Tesla fast chargers without an adaptor. With an adaptor, Teslas can access both Superchargers and Fast Chargers while non Teslas cannot access the vast Supercharger network.

Overall, there are good charging options in my area. But the most potentially versatile EV for charging, among Bolt, Leaf, Model 3, Kona and Niro is again the Model 3. So it looks like we have a front-runner here.

****

Thanks for joining me again! I hope this most recent blog was helpful and informative to you. If it was, please share widely! In addition, if you are interested in participating in clean rideshare to help fight climate change please consider using my Uber referral code ROBERTF3028UE. For the next blog, I’ll be making a big announcement. Hope to see you then!

 

Which Clean Energy Vehicle is Best for Rideshare?

More than 1 billion… That’s how many carbon spewing internal combustion engine vehicles presently operate on the road today. Approximately 2.6 billion — that’s how many tons of carbon the use of this ground transport spews into the atmosphere each year (see also).

We’re Well Behind the 8-Ball on Climate Change — So What to Do?

Simply transforming this system to electrified transport would remove roughly half of these heat-trapping emissions. Emissions that are, even now, worsening our weather, melting our glaciers, warming our world, displacing hundreds of thousands of people, and threatening the emergence of a Hothouse Earth. And 90 percent or more of vehicle based carbon emission could be removed by linking electric vehicles to clean energy generation sources like wind and solar.

hothouse earth

(Tipping into a hothouse Earth state will happen if we keep burning fossil fuels. Individual and group action is now needed to prevent this catastrophe. Image source: The Potsdam Institute.)

Doing this would provide a big step forward in addressing the climate crisis. It would help to peak carbon emissions early on a global scale. It would provide the needed energy storage production for transforming the larger energy system. And it would prove to the world that we do not need to sacrifice quality of life or life-saving technologies in order to clean up our act.

****

Welcome to the second installment of Extreme Clean — my personal journey to cut my carbon emissions to zero and to multiply my clean energy footprint by sharing it with others. I hope you will join me in this much-needed endeavor.

****

From the standpoint of a single individual in a massive system that presently injects mountains of heat-trapping carbon into the atmosphere each year, the question needs to be asked — what can I do to speed up the clean energy transition process? In such a large world, how can the actions of a single individual matter? And how can I multiply my impact?

Choosing a Clean Energy Vehicle to Meet My Needs

For my part, and for the first phase, I have decided to purchase a clean energy vehicle. But I’m not just going to buy one and keep it for myself. I’m going to rideshare it through the Uber app. Thus multiplying my clean energy impact. I’m already living a veg-vegan lifestyle. My wife, two cats, and I already live in a relatively modest abode. But this is not enough. Not nearly enough. So step one is cleaning up my transport and sharing it with others.

Swallow Falls

(Cat and I hiking at Swallow Falls in 2018. For clean energy to work, it needs to provide for families like mine. We’re going to see if it’s possible to do that and more.)

In order to do this, I’ve go to make a choice. I’ve got to pick a clean energy vehicle that meets my transportation needs. This includes driving my wife to her work at the Humane Society of the U.S. about a mile away. It includes a vehicle capable of making the trek to the mountains where we enjoy hiking and camping. It includes one that is able to make the annual family reunion trip to Murrell’s Inlet some 500 miles away. One that can make the seasonal treks to my parents and grandparents in Virginia Beach — which is about 250 miles from my abode in Gaithersburg, MD. And if I rideshare it, I’m going to need something capable of consistently driving 100 to 200 miles per day on a 4-5+ day a week basis.

In other words, what I need is an affordable advanced clean energy vehicle. And for my purpose, for this blog post, I’ll be evaluating the capabilities of these vehicles before making a choice in a future installment. This first evaluation will look directly at the vehicles themselves. In particular, I’m interested in their range, their features, their price,  their level of efficiency, and their charging speed. In a second blog, I’ll be looking at another key feature — the availability of the charging infrastructure that supports them. This is crucial for me — as I presently live in a condo with no home charging capability. So I’ll need access to nearby local charging stations and fast charging stations. But, for now, I’ll be looking simply at vehicles themselves.

Five Highly Capable Clean Energy Vehicles on Offer

Luckily, at this point in time, there are now numerous affordable, advanced clean energy vehicles on offer. Even just last year, this was not the case. But, for the U.S. market, the number of clean energy vehicles that roughly meet my stated needs is about five. Last year, it might have been 1 — the Chevy Bolt. Arguably, the Tesla Model 3 also met my needs in 2018. But, on price (at around 50,000 dollars and up), it was then unattainable.

No more. The 2019 Model 3 Standard and Standard + are now within reach as well.

In 2019, Nissan is also offering a longer range version of its global best-seller — the Nissan Leaf. In 2018, the longest range a Leaf could achieve was approximately 150 miles. For my needs, this was a bit too short-legged. But the new Leaf + now boasts more than 200 miles of all-electric range. So we can add it to our list.

Rounding out the final two we have that Hyundai Kona Electric and the Kia Niro Electric. Both offer 200+ miles of range and prices in the mid 30s before some still substantial incentives.

If I wait until 2020, there will probably be more electric vehicles on offer that meet my needs. But at this time strong government incentives are now available for early adopters. In addition the purpose, for me, is to help provide a climate saving impact. To send a signal to markets demanding clean energy now. So acting sooner rather than later is very helpful to support this goal.

Evaluating the Cars

What follows is a pretty deep dive into the features and capabilities of these five vehicles. So hold onto your hats! The information is about to get dense!

Chevy Bolt

(Achieving a mass market debut in 2018, the Chevy Bolt is a highly capable, affordable electric vehicle featuring 238 miles of range and a number of highly attractive options. Image source: Chevy.)

Digging deeper into the individual cars on range, we find that the Chevy Bolt presently boasts an EPA range of 238 miles. This compares favorably to the Tesla Model 3 Standard at 220 miles of EPA range. However, the similarly priced Model 3 Standard + edges the Bolt out at 240 miles. Nissan Leaf Long Range is very close but lags a little at 226 miles. It is also worth noting that the Nissan is the only vehicle on offer with a passive cooling system. In the past, this has had negative impacts on battery life — which means that there’s a bit higher risk that the Leaf’s range could degrade more rapidly over time. Depending on local climate and use, my mileage may very. But this is a concern given the big swings in temperature the D.C. area has recently experienced. Moving over to the Hyundai Kona Electric, we get a bit of a break-out with 258 miles of range. This is pretty impressive and is one of the features that makes the Kona a pretty attractive offering to me. Finally, the Kia Niro matches the Standard + version of the Model 3 with 240 miles of electric range.

To me, this is all very impressive and roughly matches what only versions of Tesla’s Model S and X could do on range just a few years ago — but for around 75,000 to 90,000 dollars. Of course, none of these vehicles are as luxurious as the S or X. But the longer legs makes them all far, far more attractive to potential EV buyers — further shrinking the range gap with the ICE.

Looking at features, I’m going to provide a rough overview of the various aspects of each car. This is by no means fully comprehensive, but it does give a rough overview. Chevy Bolt is a relatively roomy sub-compact with 94 cubic feet of interior space and 17 cubic feet of storage. It has five seats, but might be a crunch for some larger folks in ride-share. Like most sub compacts, it can expand its cargo capacity by lowering the rear seats. The base Chevy Bolt comes with a rear camera and a 10.2 inch digital touch screen. Like many electric vehicles, Bolt has a lot of zip with 200 horsepower. Pretty surprising to pack so much torque into a sub-compact body design. Autonomous and more advanced AI features are available on the 41,000 dollar version. But the base version is, well, pretty basic in this respect. In addition, a number of people have complained about the seat comfort of the Bolt. An issue that, hopefully, Chevy is working to address.

Model 3 Standard

(At 35,000 dollars base price, the Model 3 Standard is Tesla’s fulfillment of its promise to provide an affordable mass market electric vehicle. And it’s a real thing of both beauty and clean energy aspirational achievement. Image source: Tesla.)

Features for the Model 3 Standard and Standard + are a bit more luxurious and muscular than the Bolt. The interior for the Model 3 is 97 cubic feet. However, storage is less than the Bolt at a still respectable 15 cubic feet including the front and rear trunks. Seating for the standard version is cloth, but the Standard + boasts vegan leather (faux leather) along with front heated seats. Basic level of autonomy including collision warning is standard for the vehicle. However, full autopilot is a 7,000 dollar upgrade (and out of reach for me). The central screen is 15 inches and includes most control options for the vehicle. Doors and windows both open at the push of a button from the inside (no levers). And outside entry is controlled either by fob or cell phone. Even the Standard Model 3 features sport car performance at 130 mph top speed and 5.6 second 0-60 acceleration. With the Standard + improving to 140 mph and 5.3 second acceleration. Overall, the feel of the Model 3 is that of a pretty awesome clean machine featuring minimalist styling, impressive design, decent AI capability, and powerful road performance. In terms of overall features, it’s a step beyond the competition, putting it in a class all its own.

Nissan Leaf + features include a unique customizeable display panel — which is pretty cool. Standard also includes automatic breaking — a basic autonomous capability. Like many EVs, the 226 mile/62 KwH battery is pretty muscular providing 214 horsepower and quite a bit of torque. Top speed is limited to 98 mph and 0-60 time is about 7 seconds. Central screen is a bit small for the class at 8 inches. Another compact model, the Leaf does boast a rather large storage area at 23.6 cubic feet. Hatchback design allows for good optimization of space. Other standard provisions include a heated steering wheel — nice for cold mornings.

Nissan Leaf Long Range

(Nissan has already sold more than 400,000 all-electric Leafs globally. Its new 226 mile range offering is bound to extend the legacy of this clean energy vehicle brand through seriously expanded capability. Image source: Nissan.)

Hyundai Kona Electric comes standard with another relatively beefy 201 hp electric motor. The vehicle is equipped with a relatively small 7 inch central display screen. Autonomous features include forward and side collision avoidance. A crossover/compact SUV, the vehicle looks really attractive both outside and inside. It sits higher than Bolt, Model 3, and Leaf — which likely provides some additional interior comfort. Overall cargo space is a decent 19.2 cubic feet. Seating for five might be a bit tight in back for larger riders — a repeating theme for the class of new, affordable electrics. Overall, a very attractive vehicle with notably high review ratings.

Kia Niro Electric rounds out our list with another 201 hp motor. It’s worth noting that the basic design is shared with the Kona, so a number of vehicle aspects will be similar. Kia Niro’s body, however, is roomier than Kona — with more space for those five passengers and 19. 4 cubic feet of storage. It is worth noting that Niro is still not yet available in the U.S. — so details are a bit less specific than the other options above. If the vehicle is not available in Maryland by mid April, it may opt itself out of the running for me. In general, there have been some issues with U.S. availability for the Kona as well — which appears to be limited to around a 20,000 vehicle per year global production rate. This compares to Bolt which will likely hit above 30,000, Leaf at around 100,000ish for 2019, and Model 3 at 250,000 to 300,000 (estimated figures).

Price comparisons are pretty comparable between these various high-performance, lower cost EVs. Chevy Bolt starts at $36,500 while the Tesla Model 3 Standard and Standard + start at $35,000 and $37,500 respectively. The longer range Nissan Leaf starts at $37,445. Kona shows a starting price of $36,500 — at the same point as the shorter range Bolt. Meanwhile it’s suggested that Niro will start at $37,500. Model 3 and Bolt have both lost the full $7,500 dollar tax credit, however. So at present that incentive is bumped down to $3,750 dollars. In addition, Maryland offers its own $3,000 dollar subsidy for electric vehicle purchases — which applies to all of the above models. Other features related to price include reported generous rebates on Bolt by Chevy as well as very attractive financing offers by Tesla (3.75 percent) and Bolt (zero percent for some qualifying buyers). Adding money to the ledger could include hidden costs like Tesla’s 1,200 dollar destination fee. All vehicles would be subject to sales taxes for their regions.

Kona Electric

(Kona Electric is a beautiful, highly capable 258 mile range EV crossover. But can Hyundai produce enough to meet expanding global EV demand and will it reach all markets in the U.S. during 2019? Image source: Hyundai.)

Not included in the price is the likely savings over time for lower maintenance and fuel costs. For regular drivers, this is pretty substantial — amounting to $1,000 dollars in savings per year or more. For higher usage drivers involved in rideshare, this savings is likely in the range of $3,000 per year when including reduced fuel costs, reduced wear and tear on brakes, no need for an oil change (I’ve changed my oil once per month on the Hyundai!), and overall return due to more simple design. These savings may be somewhat offset by rarer parts for EVs and potential longer periods in the shop as the maintenance infrastructure for EVs is somewhat smaller than for ICEs at present. In addition, use of aluminum to lighten the frames for Tesla vehicles may also add to body costs as aluminum work tends to be a specialized skill. Reports are, however, that Model 3 was simply designed for ease of use, manufacture and repair. We shall see if these claims hold out.

Efficiency is one factor where electric vehicles are head and shoulders above their ICE counterparts. Electric engines, in general are about 3 times as efficient as internal combustion engines. So far less energy is wasted overall. This is one reason why even EVs plugged into standard grids get far better fuel economy ratings and emit far, far less carbon than their ICE counterparts. EPA rated efficiency numbers for all the above vehicles are quite extraordinary. But it is an interesting metric to compare and determine which vehicle(s) stand out and which lag a bit. In the end, those with the highest efficiency will produce the lowest carbon footprints in use when plugged into the grid — which is important to me.

Kia Niro Electric

(Kia Niro Electric is another beautiful and highly capable affordable EV crossover. Will it release in time and in large enough numbers to have an impact on the U.S. market, much less make it available as a viable choice for me? Image source: Kia.)

EPA testing shows that the Chevy Bolt comes in at 119 mpge fuel efficiency. This is an amazing rating approximately four times better than my present Hyundai. But the Tesla Model 3 Standard and Standard + leap ahead with a 134 mpge rating. This is amazing considering that the vehicles have a rather high curb weight. But Tesla’s newer batteries appear to be breaking ground in a number of respects. Nissan Leaf long range lags both Bolt and Model 3 at a still impressive 112 mile per gallon equivalent. Kona follows at 120 mpge efficiency — which is also pretty strong. Finally, Niro rounds out the pack at 112 mpge. Overall, very impressive but with Tesla coming in as a clear leader.

Last but not least, we finally come to the important metric of charging speed. Typically, most of these vehicles can recharge at a rate of around 15 to 30 miles per hour of range through level 2 charging stations or the same capability charger at a home garage. However, in a pinch, all of these vehicles possess some form of fast charging capability — enabling charging rates of 150 miles per hour or more. For rideshare, this is important due to the fact that I might find myself relatively far afield and need to return home while still a 100 or more miles out. In addition, since I’m going to be using my vehicle for long trips, rate of charge will be a major factor in determining how long it takes for me to get to a distant destination.

Starting with the Chevy Bolt we find that this EV supports up to 50 kW rates for fast charging. What this means is that the Bolt can go from a low level of charge to a near full level of charge in 1 hour and 15 minutes. Nissan Leaf also is capable of recharging at 50 kW per hour rates and produces comparable recharge times during fast charge. True to trend, Kona and Niro also both charge at 50 kW per hour rates. And this rounds out the rest of the pack.

Pretty decent, but nowhere near as fast as the Tesla Model 3 using a Supercharger. Present Superchargers can provide between 72 kW and 120 kW of charge at most locations. For Model 3 Standard, these can provide a near full level of charge within between 40 minutes and an hour. A new version 3 supercharger rated at 250 kW is being introduced in California during early 2019. The Model 3 is equipped to handle this level of charging — which could cut near complete charging times down to 20-30 minutes or less. However, it will take a few years for these ultra-fast chargers to trickle through Tesla’s vast Supercharger network. It is worth noting that the Supercharger Network is presently closed to rideshare drivers. However, a Tesla representative recently noted that fair use of the network was typically considered to be once or twice per week. So on the rare occasion that I’m stranded far from home while ridesharing, I can simply turn off the Uber app, drive to the nearest Supercharger, get enough charge to return home, then link up with a local level 2 charger for the remainder (more on charging networks in another blog). So still useful in a pinch.

Final Thoughts

At this point, I’m 2900 words into the report and what I can say is that I’m very impressed with all the electric vehicles on offer. If you’d have told me 5 years ago that five very attractive EVs with this price range and capability would be available in 2019, I would have hoped you were right, but I might have doubted your conclusion. In addition, I’d like to add that there is a lot to consider when buying an EV for extreme clean energy use. Far more than I had initially thought. The details in this report are pretty extensive and, for me, quite a lot to digest.

At this point, I’m still evaluating which vehicle to choose. And I’d like to ask you for your help and opinions — so please feel free to post them below! I’ve also added a twitter survey at the start for feedback.

For our next blog, we’ll be looking at the ability of various charging networks to meet my stated needs. The availability of chargers is a big deal for me given the fact that I live in a Condo, don’t have a personal garage, and don’t have a charging station presently in my parking lot. So, yeah, access to various chargers nearby is going to be pretty key.

As ever, thank you all for joining me. I hope you have found this evaluation helpful. I also hope that some of you will decide to take the leap and rideshare in a clean energy vehicle. If you do, please help this blog by using my Uber referral code: ROBERTF3028UE. And if you have found this blog helpful and informative, please share widely! Warmest regards and, until next time, ciao!

Extreme Clean — Fighting Climate Change in Daily Life

The climate story of past weeks has grown all-too-familiar. The Central U.S. has been flooded by record rains whose extremity was spiked by the heat trapping gasses still building in our atmosphere. A city of half a million people was devastated by a cyclone feeding off of record warm waters. The oceans continue their rise. The glaciers their melt. The corals their dying. The fisheries their shifting. The seasons their altering. In other words, the climate upon which we all rely for so much is gradually becoming FUBAR.

warmer than normal sea surface temperatures

(Warmer than normal sea surface temperatures related to human caused climate chance contributed to a city-devastating cyclone striking Mozambique. Image source: Earth Nullschool.)

The story of the recent climate change related disasters could have been written a month ago, a year ago, two years ago. And ten years from now it will be the same story. Only worse. Though we have not yet entered the truly catastrophic age of climate change driven by fossil fuel burning and greenhouse gas emissions, for some, the situation is already a catastrophe. Whole towns have burned from worsened wildfires. Entire islands are being swallowed by the rising sea. The heat is more dangerous, the droughts more difficult with each passing year. And new, terrible storms range the globe with increasing frequency.

In my last blog, I made an appeal for U.S. and global action in the form of a Green New Deal. Why? Because I believe this is our all hands on deck moment. The time when we, both as people and as societies, need to do everything we can to blunt the coming trouble. And true to that cause — I went dark.

Why?

(More on present day climate impacts and action.)

Well, I figured that it was time to stop simply writing about climate change and start doing something about it on a personal level. Sure, I’d already done what I could in some respects. My wife and I worked to be as energy efficient as possible. We adopted a vegetarian/vegan lifestyle (which reduces our carbon emissions by about 10-15 percent). I promoted clean energy through my work and writing. I voted for politicians who would adopt helpful climate policy like the Green New Deal. But for me, those actions were not enough. In order to be most effective, I needed to pursue the goal of a clean energy transition and a net zero carbon lifestyle for self and family and to help others to do the same. In the parlance of my military/emerging threats background, I needed to become a climate change response force multiplier.

That public effort begins today. It will be a no-holds barred description of my clean energy transition attempts. A down in the dirt expose of my successes, my struggles, and my failures. And an attempt to transfer all the knowledge gained in that process to as many of you as possible. I’m calling this effort — Extreme Clean. And I hope you join me in pursuing it.

Though the public effort begins today, the private effort started back in September of 2018. Back then, I decided that the first major goal of my clean energy transition attempt would be to purchase an advanced electrical vehicle and to share access to this clean energy system with others. Gaining access to a long range electric vehicle would not be easy. Costs, compared to the reach of my middle class income, were relatively high — ranging from around 29,000 dollars to the upper 40s. And sharing an electric vehicle would not be easy. Slower refuel times and somewhat shorter range than internal combustion engine vehicles were all also limiting factors.

Reduced emissions with electric vehicles

(Electric vehicles allow you to cut transport based carbon emissions by half or more. Image source: Union of Concerned Scientists.)

At the time, I didn’t have the money or the means or even a plan. My access to clean energy, as had been the case for too, too long, was limited. But there were a growing set of options coming from clean energy business and a new economy that I thought could help me reach my goals.

My first move was to begin ride-sharing during the time I would typically spend blogging. I planned to use the ride share money to save for an electric vehicle. The vehicle I was driving (and continue to drive) is a 2009 Hyundai Elantra. Not a gas guzzler, for sure, but a vehicle with a total carbon footprint in the range of 2-3 times that of a fully electrified vehicle plugged into the cleaner Maryland grid. One that would be even less if I could eventually get a home equipped with solar panels.

Rideshare

(My present goal: ridesharing an electric vehicle as a clean energy multiplier.)

Since September of I have completed 1,139 shared rides using the Uber rideshare application. This enabled me to have lots of chats about climate change and clean energy with riders. And I’ve got to say that many, many people out there are very concerned. These folks come from all walks of life and political persuasions. And though I did get into a few polite discussions with people of the climate change denial persuasion, my overall sense is that the vast majority of riders I picked up basically got it and shared my concern.

To me, this experience was pretty liberating. But even more liberating was the fact that I was able to save a good deal of money using the Uber app to put toward the purchase of a clean energy vehicle. To start taking rides in an electrical vehicle in order to multiply my clean energy impact.

So as of this point in time, I am looking at logging my reservation of a long range electrical vehicle by mid April, to take delivery of that vehicle by sometime in May or June, and to start sharing clean rides with people by that time. But before I do that, I’m going to have to actually choose a brand of electrical vehicle to purchase. And in that process, I’m going to need to look at cost, capability, maintenance, and charging. To look at what works best for me given my personal needs and my clean energy goals. It won’t be easy. I live in a condo. I don’t even have access to a garage. So for me, the bar for clean energy access is pretty high. But that’s what the Extreme Clean program is all about. Attempting to overcome difficult obstacles in order to help save our future. And I hope you all will weigh in as I go through the process of picking an electrical vehicle that’ll work for me given my situation and goals.

So thanks so much for stopping by. Thanks for taking part in Extreme Clean. And until next time — cioa!

(Want to help spread the word about personal clean energy transformation? Then please share this blog far and wide. Wish to engage in a similar Extreme Clean effort through rideshare? Then please help by using this Uber referral code: ROBERTF30288UE.)

%d bloggers like this: