If there is one word I’d use for the summer of 2019 it would be awakening. Awakening to a general public awareness of a climate crisis driven by fossil fuel burning we are now entering the throes of.
(According to NOAA, July of 2019 was the hottest July on record for the state of Alaska. This likely presages a July that will be globally the hottest July ever recorded in 2019. Much of this excess July heat was centered on the polar zones during the month — resulting in serious ice loss for both Greenland and the floating Arctic sea ice. Image source: NOAA.)
The global record hot month of June along with its related severe heatwaves, storms, and droughts have certainly served to raise the general awareness of trouble. Our new youth advocates such as Greta Thunberg and an expanding Extinction Rebellion, have certainly served to amplify the much-needed message. But vividly melting ice in tremendous volume — particularly in Antarctica, Greenland and on the ocean surface has also played its role.
The Arctic zone has seen an outrageous hotter than normal period that has extended throughout July and well into August. States and regions within or near the Arctic Circle have experienced temperatures from the upper 70s all the way into the lower 90s. Great wildfires have blanketed large sections of thawing permafrost and boreal forest — casting out smoke plumes covering as much as 4 million square kilometers at a time. Greenland saw a single day in which ice melt exceeded 11 billion tons. By volume, that’s 11 cubic kilometers — roughly equal to 11 moderate sized mountains — gone in a single 24 hour period (what does one cubic kilometer look like? See here.).
Out in the ocean waters of the Arctic, another key feature of our climate system that keeps the Earth environment stable, was getting hammered by the rising heat. For every day from July 22nd through August 9th, Arctic sea ice extent had been running in record low ranges below previous low marks set for this time of year during 2011 and 2012.
2012 in particular was a very severe Arctic melt year. Both sea ice and Greenland saw significant losses at that time. But it appears as we end the decade of the 2010s and start to enter the 2020s, Arctic summers like the one that occured in 2012 will become commonplace even as new hot outliers are more possible. For 2019 has begun to replace some of the previous worst losses seen during 2012.
(Arctic sea ice extent entered new record low ranges below the 2011 and 2012 lines during late July and into early August. By August 11, Arctic sea ice had dropped to 5.249 million square kilometers the second lowest measure for the date. Image source: NSIDC.)
As we get into August, it appears that at least some of 2012’s late season sea ice records will hold. The new August 11 measure of 5.249 million square kilometers is just above 2012’s low mark of 5.190 million square kilometers. And August 10 saw 2019 edging just above the 2012 line in the NSIDC measure.
Looking forward, the second week of August is expected to bring 1.38 C above average temperatures for the Arctic region. This is a rather significant departure for August as Arctic temperature anomalies tend to moderate during summer. And very warm ocean surface temperatures ranging well above 4 C warmer than average for large regions is likely to continue to enhance sea ice melt (see right image below).
(Greatly reduced Arctic sea ice extent [left] faces off against much warmer than normal Arctic ocean waters during August of 2019 [right]. Image sources: Uni Bremen and DMI.)
But a present lack of forecast strong weather systems that typically impact ice at this time of year such as burly high pressure ridges over the Central Arctic or major storms invading from the south may help to maintain at least some of the ice. Nonetheless, with so much heat left in the Arctic system and with sea ice perilously thin for this time of year, I’d be remiss if I didn’t say that anything can happen between now and traditional melt season end in mid September.
(Related video blog above.)
(Want to help fight the climate crisis by transitioning to a clean energy vehicle? Get 1,000 free supercharger milesĀ at this link.)
There are many reasons why we monitor Arctic sea ice melt during summer. First, sea ice is a key climate indicator. Second, we are in a period of time where ice-free Arctic conditions are becoming more possible as global temperatures keep rising. And third, falling levels of Arctic sea ice have knock-on effects for a number of climate systems that we all rely on.
(Will we see a warmer than normal early June for the Arctic Ocean? If we do, it could seriously impact the Arctic Ocean’s remaining and thinning sea ice.)
(Above freezing or near freezing temperatures predicted for most of the Arctic Ocean on June 4, 2018 in the GFS model. Sea ice tends to start melting at around -2 C due to the salt content in surrounding ocean waters. During recent years, the Arctic sea ice has been far weaker and thinner than historic norms. Image source: Earth Nullschool.)
Overall, GFS model runs indicate that temperatures will remain in a range between 0.5 and 1.3 degrees Celsius above average for the Arctic over the next five days. These above normal temperatures pose increased risk for sea ice losses during the crucial June window. June weather tends to greatly influence late season sea ice totals. A warmer than normal June will produce higher numbers of melt ponds and greater impetus for melt to continue with force through July, August, and September. Cooler and often cloudier Junes have tended to protect late season sea ice from hitting new all time record lows.
(Weekly averages for the Arctic Ocean during early June are expected to range near 1 C warmer than normal — extending what has already been a warmer than normal May. Image source: Global and Regional Climate Anomalies.)
2018, so far, has seen a warmer than normal May for the Arctic Ocean. And so we see ice getting swept back behind traditional lines in the Chukchi Sea, in the Beaufort Sea, and in the region north of Svalbard. Peripheral areas like Baffin Bay, Hudson Bay, and the south Kara Sea have seen slower ice melt due to their co-location with trough zones. But it is Central Arctic melt that we should be more concerned about. So we’ll be closely monitoring this region as May runs into early June.
During recent years there has been much speculation about when the Arctic Ocean will start to experience ice-free summers as fossil fuel related industries pump higher and higher volumes of greenhouse gasses into the atmosphere. In the early-to-mid 2000s, scientific consensus was that melt would tend to be more gradual and ice-free summers would hold off until the final decades of the 21st Century when the world was around 3-4 C warmer than 19th Century averages.
But the Earth System is far more sensitive to temperature increases than the early forecasts expected. Major Arctic sea ice losses surprised the world during September of 2007 and subsequently in the same month of 2012. Now, it is obvious that a pattern of far more rapid sea ice melt has taken hold. And the scientific consensus appears to have settled on a more likely and much nearer date around the early 2030s — when the world will have warmed by about 1.6 degrees Celsius.
(An oddly warm pattern in which above freezing temperatures have come early to the High Arctic is setting up during May of 2018. Content Source: Climate Reanalyzer. Video source: Scribbler’s Youtube.)
However, when it comes to sea ice, nothing is certain at this time. Any single Arctic year in which temperatures spike — particularly during normal melt season — could result in the losses that we once expected to occur much later in time.
There are many factors that will ultimately determine when a summer ice free state occurs. Warm winters are a major one. And the past two years (2017 and 2018) have seen Arctic winters in which temperatures hit some ridiculous high extremes. But another major factor is the set-up to Arctic summer that takes place during the window months of May and June.
May and June are very important for the rest of the melting season. Not only do we now see these warm air intrusions, but high pressure maintains its presence over parts of the Arctic as well (which means relatively cloudless skies -> insolation -> melt onset and melt pond formation -> preconditioning of the ice pack -> melting momentum that gets expressed during July and August, regardless of the weather)… We have to wait and see what happens, step by step, but this isnāt a good start for the ice.
If May and June are unusually warm, particularly over the Arctic Ocean, then the sea ice — which is already greatly weakened — is bound to face an extended period of above-freezing temperatures. If such a period stretches for 5 months from May through September rather than the typical 4 months (June to September), then we are more likely to see the Arctic Ocean briefly flip into an ice-free or near ice-free state for the first time in human history.
(The coming week is expected to feature between 1 and 10 C above average temperatures for locations across the Arctic Ocean. These are very strong warm departures during May. Last week saw similar extreme warm departures. And we are already starting to see sea ice losses pile up. Image source: Global and Regional Climate Anomalies.)
Not to put too fine a point on it, but this severe warming trend might end up presenting a bit of a problem. The extended period of melt mentioned above may begin in force — setting off a chain of feedbacks that could tip the Arctic Ocean into a far less frozen or even an ice-free state (under absolute worst case scenarios) this year.
To be clear, this is not a forecast that such a condition is bound to occur during 2018. It is just an analysis of underlying trends and a statement that risks are higher if such trends as we now observe continue. Late May could flip to a cooler than normal regime. June could be cooler and cloudier than normal (as happened during 2016 and 2017). And if that happens again, we may be spared.
(Average Arctic temperatures for 2017 [left] and 2018 [right]. The red line depicts the yearly temperature trend. The green line depicts the Arctic climatological average for 1958-2002 [which was already warmer than normal]. Note the big temperature spike in the right hand graph. That’s where we are now. Image source: DMI. For further reference, see Zack Labe‘s composite temperature analysis for the 80 North region.)
However, we are already on a much higher ramp for spring temperatures in the northern polar region than during 2017. And though 2016 saw a slightly warmer than normal spring near the pole, the May 2018 spike already far exceeds anything we saw at that time. So much, in fact, that present temperatures for May 6 are comparable to those typically seen during early June from the 80 degree N Latitude line to the Pole.
This higher ramp and related record warmth is already accelerating melt. Sea ice losses over recent days have greatly picked up and we are getting closer to record low daily ranges. If melt accelerates to a point, the greatly expanded darker ocean surfaces will draw in more heat from the sun’s rays during June — potentially overcoming the impact of the increased early summer cloudiness we have seen during recent years. Such a scenario, if it continues to develop, would be a nightmare from the climate change perspective.
It’s been consistently, abnormally, warm in the Arctic for about as long as any of us can remember. But during recent years, the changes — caused by a massive and ongoing accumulation of heat-trapping gasses in the Earth’s atmosphere — appear to be speeding up.
(Far above normal temperatures are expected to invade the Arctic this week. The likely result will be an acceleration of sea ice melt and retreat. Image source: Global and Regional Climate Anomalies.)
This week, two major warm air invasions — one issuing from Siberia and another rising up through the Fram Strait and extending north of Greenland are expected to bring locally 10-20 C above normal temperatures and accelerate early season sea ice melt in an already reeling Arctic.
Overall, the pattern has been one of consistent abnormal warmth. And over the coming week, a number of warm air invasions will infringe upon the typically cold early May Arctic — testing new boundaries yet again.
(An ice-free Bering Sea, open water invading the Chukchi, and fractured sea ice over the Beaufort are notable features for melt season start during May of 2018. Image source: NASA.)
Much of the heating action this year has occurred over the Bering and Chukchi seas — which have never seen so much ice lost. Already sea ice is greatly reduced through these regions. Open water extends far into the Chukchi — onward and north of Barrow, Alaska. Still further into regions in which sea ice is typically rock-solid during this time of year, the Beaufort is experiencing its own late April break-up.Ā But the areas that are expected to see the greatest warming over the coming days run closer to Siberia and the Atlantic.
Major Spring Warm Air Invasion
Today, a wedge of above-freezing air is invading the Laptev Sea north of Central Siberia. Strong southerly winds issuing from Central Asia are running north into the Arctic Ocean. They bring with them 10 to 20 C above average temperatures for this time of year — which is enough to push readings as high as 35 degrees F (2 C) over what during the 20th Century would have been a solid fringe of the polar ice cap.
Over the next 24 hours, this leading edge of warm air will spiral on toward the East Siberian Sea — bringing above freezing temperatures and liquid precipitation with it.
(5-Day forecast maximum temperatures show considerable warm air invasions proceeding throughout the Arctic. In many cases, temperatures near the North Pole will be warmer than regions far to the south. An impact of the warming world ocean on the Arctic environment. Image source: Climate Reanalyzer.)
But the main warming event for the Arctic this week will occur in the region of the Fram Strait east of Greenland. A strong low pressure system near Iceland is expected to drive wave after wave of much warmer than normal air north into the Arctic. This warm air thrust will bring with it temperatures in some places that exceed 20 C above average. Overall, Arctic Ocean basin temperatures are expected to average more than 2.3 C warmer than normal for the entire first week of May.Ā Such high temperature departures are particularly notable for this time of year — as Arctic thermal variance tends to moderate during spring and summer.
The system will push above freezing temperatures deep into the Arctic — generating a repeat of the strange flip-flop that has become so common recently where temperatures near the North Pole are much warmer than readings further south. Warmer than freezing temperatures will also over-ride coastal portions of northeastern Greenland in yet another odd aspect of the event.
Warm storm effects including gale force winds and waves of 8-12 feet will provide added effect to above freezing temperatures in impacting the sea ice throughout the Fram Strait and northeast Greenland region. Increased insolation due to sunlight spreading over the region will also add to the overall potential for melt.
Our lexicon of what’s considered to be normal weather does not include February days in which temperatures at a North Pole shrouded in 24-hour darkness cross into above freezing ranges. But that’s exactly what some of our more accurate weather models are predicting will happen over the next five days.
Another Unusually Warm and Powerful Storm
During this time, a powerful 950 to 960 mb low is expected to develop over Baffin Bay. Hurling hurricane force gusts running from the south and digging deep across the North Atlantic, Barents, and Arctic Ocean, the low is projected to drive a knife of 50-60 F above average temperatures toward the North Pole by February 5th.
(20-25 foot surf heading for the increasingly fragile sea ice in this February 4 wave model forecast. Note the 30-40 foot waves off Iceland and associated with the same storm system that is predicted to bring above freezing temperatures to the North Pole on February 5th. Image source: Earth Nullschool.)
These warm winds are predicted to bring above freezing temperatures to areas that typically see -20 to -30 F readings in February. They are expected to rage over a sea ice pack that is at record low levels. And if the storm emerges, it will hammer that same dwindling ice pack with 20 to 25 foot or higher surf.
(Arctic sea ice extent is presently at around 13 million square kilometers [bottom red line] — a new record low for this time of year. It should be around 15 million square kilometers and would be if the world hadn’t warmed considerably since the 1980s. Image source: JAXA.)
Not only do the storms bring warmer temperatures with them — a kind of heat wave that interrupts the typical period of winter freezing — they also drive heavy surf into a thinner and weaker ice pack. The surf, drawn up from the south churns warmer water up from the ocean depths. And the net effect can dissolve or weaken large sections of ice.
The presently developing event is expected to begin to take shape on February 4th, with warm gale and hurricane force winds driving above freezing temperatures near or over the North Pole on February 4th – 6th. To say that such an event, should it occur, would be practically unprecedented is the common understatement of our time. In other words, this is not typical winter weather for the North Pole. It is instead something we would expect to see from a global climate that is rapidly warming and undergoing serious systemic changes.
(February 5 GFS model run shows above freezing temperatures crossing the North Pole. Temperatures in this range are between 50 and 60 degrees [F] above average for this time of year. If the extremely warm cyclone event occurs as predicted, it will be a clear record-breaker. It will also further harm Arctic sea ice levels that are already in record low ranges. Image source: Climate Reanalyzer.)
Extreme Cyclone Beneath an Extreme Jet Stream
In the predicted forecast we see more of the extreme jet stream waves that Dr. Jennifer Francis predicted as an upshot of human-forced polar amplification (a condition where the poles warm faster than the rest of the globe under a larger warming regime). The particular wave in question for the present forecast involves a high amplitude ridge running very far to the north over Svalbard and knifing on into the high Arctic. The facing trough over Baffin Bay, Greenland, and North America is also quite pronounced and elongated. A feature that appears to want to become a cut off bubble of displaced polar air in a number of the model forecasts.
High amplitude Jet Stream waves during Northern Hemisphere winter as a signature of global warming are predicted by Francis and others to generate greater temperature and precipitation extremes in the middle latitudes. They are a feature of the kind of stuck and/or upside down weather we’ve been experiencing lately where temperatures in the Northeast have been periodically colder than typically frigid locations in Alaska. These flash freezes have, at times, faded back into odd balmy days in the 50s and 60s (F) before plunging back into cold. But the overall pattern appears to get stuck this way for extended periods of time.
(Very high amplitude ridge and trough pattern at the Jet Stream level of the circumpolar winds is thought by a number of scientists to be a feature of human caused global warming. One that is related to polar amplification in the Arctic. Image source: Earth Nullschool.)
Heat in the Arctic is driving sections of cold air south even as warm air invades through places like Alaska, Northeast Siberia, and the Barents Sea. But the main variables of this story are global heat, global warming, fixed extreme temperature and precipitation patterns, and warm air invasion. The winnowing streamers of cold air driven out over places like the U.S. Northeast are just a side effect of the overall warming trend. One that is starkly apparent in the very odd western warmth that has grown more and more entrenched with each passing year.
For Now, It’s Still Just a Forecast
As with any five day forecast, we can take this one with more than just a grain of salt at the present time. But such an extreme event is entirely possible during the present age of human-forced climate change. During late December of 2015, we identified a predicted major storm that ultimately drove North Pole temperatures to above freezing. At the time, that storm was considered unusual if not unprecedented. However, since February is typically a colder period for the North Pole region, a warm storm drawing above freezing air into that zone would be even more unusual. It would also be a feature of the larger trend of loss of typical seasonal winter weather that we’ve been experiencing for some time now.
5 FEB UPDATE: Storm and Heat a Bit Further South and East Than Predicted
A powerful warm storm in the 952 mb range did form and track across Greenland to exit over the Greenland Strait earlier today. The storm drove warm air far north, pushing above freezing temperatures past Svalbard and over the dark and frozen sea ice. It hurled gale force winds, hurricane gusts, and massive swells into the ice. But it did not push temperatures to above freezing at the North Pole as some models had earlier predicted.
(Warm cyclone hurls much warmer than normal temperatures across the Barents Sea and Arctic Ocean on 5 Feb, 2018. Image source: Earth Nullschool.)
It did, however crank temperature there up to -4.3 C or about 26 C above average for this time of year.
Overall, total Arctic region temperature anomalies are predicted to range from 2.5 to 3.5 C above the 30 year average for the next few days. These are very warm departures. But not so warm as recent spikes in the range of 4 to 5 C above average for the region. In addition, there appears to be a tendency for powerful warm storms to continue to develop near Svalbard in the longer 5-15 day model runs. So the North Pole isn’t out of the woods yet for potential above freezing temperatures this February.
If you’re someone who tends to worry about Arctic sea ice losses, this coming week’s weather forecast looks like a bit of a doozy. And when you consider that the sea ice is both greatly weakened and thinned in a number of the major monitors, prospects don’t look very good, presently, for 2017’s summer melt season as whole.
Abnormal Warmth Over Greenland and Baffin and Hudson Bays
(An extreme early May warming over Greenland this week produced considerable surface melt well outside the 2 standard deviation range. Today, the warmth has shifted west over Baffin and Hudson Bays. Later this week, a similar strong warm-up is predicted to impact the Pacific side of the Arctic Ocean. Image source: NSIDC.)
Temperatures for Hudson and Central and Southern Baffin, according to GFS model runs, will range above freezing over this time period — hitting as high as the low 40s (F) in Eastern sections of Hudson Bay. Over-ocean readings (which tend to moderate, but not, apparently, in this case) that will range from 5 to 15 degrees Celsius above average. These rather high surface temperatures will help to kick sea ice melt throughout these regions into higher gear.
Pacific Side of Arctic Ocean Predicted to Heat Up
Following the Baffin-Hudson warm-up, a large bulge of much warmer than normal air is predicted to extend northward from a broad region extending from Eastern Siberia through the Bering Sea and Alaska and on into Northwestern Canada. This bulge will, according to GFS model runs, by early next week inject periods of above freezing temperatures over a wide region of the Arctic Ocean that includes the East Siberian Sea, the Chukchi Sea and the Beaufort Sea. And by this time next week, these same model runs project that 10-16 C above average temperatures will dominate a large region of the Central Arctic — forcing above-freezing temperatures over a broad cross-section of the North Pole zone by May 17.
(The Arctic is expected to experience nearly 2 C above average temperatures with some regions over the Arctic Ocean hitting 16 C [28 F] above average. These are considerable departures for May when temperatures in the Arctic tend to moderate. So much warmth is likely to have an impact on the already greatly thinned Arctic sea ice. Image source: Global and Regional Climate Anomalies.)
So much early season warmth is likely to further impact an already greatly weakened and thinned veil of sea ice covering the Arctic Ocean. A cooling cap that even more conservative scientists estimate could be completely removed during a summer as soon as the early 2030s. But in the worst case scenario, and when considering how thin the ice is now, a nearly ice free summer could happen as soon as this year. Few scientists really want to talk about that now — given the likely controversy that would result. But we shouldn’t entirely ignore that possibility for fear of backlash or criticism. Nor should we ignore how such an event would tend to further distort an already disrupted Northern Hemisphere atmospheric circulation.
Indicators Show Very Thin Ice
Over recent weeks, sea ice area and extent measures have recovered somewhat as temperatures over the Arctic Ocean have moderated a bit from very warm conditions during October through March. However, a number of indicators including PIOMAS’s sea ice volume measure show that despite this mild surface extent recovery, the ice is very weak and significantly thinned.
(PIOMAS sea ice volume measure shows a considerable record low departure through mid April of 2017. Image source: PIOMAS.)
It’s worth noting that a significant portion of the extent recovery over recent weeks can be attributed to strong winds blowing ice out of the Arctic Ocean and into the Barents Sea as well as out through the Fram Strait. Such conditions are not normally considered to be healthy ones for ice retention through summer as ice in the Barents and Fram tends to melt far more swiftly than ice secured in the Central Arctic. And the Fram itself is often considered to be a graveyard for sea ice.
As for PIOMAS, the most recent measurement through the middle of April found that sea ice volume had topped out at 20,600 cubic kilometers. This measure was fully 1,800 cubic kilometers below the previous record low set for the month. It’s a tremendous negative departure that, if valid, shows that the state of the sea ice as of this time was terribly unhealthy. A situation that prompted the typically conservative Neven over at the Arctic Ice Blog to state that it’s:
Not looking good. Not looking good at all… with a maximum that was almost 2000 km3 lower than the previous record reached in 2011, it’s obvious that anything is possible this coming melting season.
(According to the EASE NSIDC sea ice age monitor, the multi-year sea ice is now almost entirely removed from the Pacific side of the Arctic. Strong, persistent winds have continued to push a good portion of the frail remainder of this ice out toward the Fram Strait — a graveyard for sea ice. And a big warm-up predicted for this week will begin to test the greatly thinned ice over the Beaufort, Chukchi and East Siberian Seas. Image source: NSIDC and The Arctic Ice Blog.)
Moreover, Neven last week pointed out that according a separate measure (see image above), typically thicker multi-year ice is presently absent from the Beaufort Sea. And, to this point, it’s worth noting that the amazing above normal temperatures that plagued the Arctic cold season for multiple years now have resulted in vast losses among this most healthy subset of sea ice.
Such considerably thinned ice presents practically no barrier to the effects of warming. It can melt quite rapidly and it is far more subject to the physical forces of wind and waves. With strong southerly winds and a big warm-up now in the pipe, it appears that this considerably thinned ice will get its first test in mid-May. Potentially creating large sections of permanently open water very early in the melt season and very close to the ever-more vulnerable High Arctic.
“Facts are stubborn things; and whatever may be our wishes, our inclinations, or the dictates of our passions, they cannot alter the state of facts and evidence.” — John Adams
*****
(March sea ice volume hit a new record low in the PIOMAS measure during 2017. Image source: OrenĀ and the Arctic Sea Ice Blog.)
Arctic sea ice volume through March 2017 continued substantially below prior years. March 2017 sea iceĀ volume was 19,600 km3 ,Ā 1800 km3 below the previous record from March in 2011. This record is in part the result of anomalously high temperatures throughout the Arctic for November through January discussed here and hereĀ [and here]. February volume was 39% below the maximum March ice volume in 1979,Ā 27% below the 1979-2016 mean, and more than 1.7 standard deviations below the long term trend line.
This increasingly thin ice cover should continue to grow a little more to reach a seasonal peak during the first or second week of April. And as you can see when looking at the graph below, the trend line following that peak does not paint a very optimistic picture for sea ice resiliency during the 2017 melt season.
(The rate of sea ice refreeze this year has been very slow. As a result, the trend line points toward the potential for a melt season that exceeds even the record low year of 2012. Image source: PIOMAS.)
Merely transposing the present gap between March 2017 and the last record low to the end of melt season in September would about split the difference between 2012’s record melt and a completely ice-free Arctic Ocean — leaving about 1,700 km3 sea ice remaining by September of 2017.
(The Arctic has never been so warm in winter as the number of freezing degree days hit a new record low during 2016-2017. For context, the less freezing degree days the Arctic Ocean sees, the closer it is to melting. Image source: Cryosphere Computing.)
Of course, April through June could see cooler conditions — which would tend to preserve more ice and tamp down the ultimate rate of loss. But the present record low sea ice volume and near record low extent sets up a situation where darker seas will absorb more sunlight and stack the odds in favor of warmer than typical conditions and higher overall rates of melt. Meanwhile, presently strong sea ice export through the Nares and Fram Straits appears to be continuing a trend of relative sea ice volume loss through early April.
Temperatures over the Chukchi Sea are predicted to hit as high as 37 degrees Fahrenheit (2.9 C) on Wednesday and Thursday as a massive high pressure ridge building over Alaska pulls warm, moist Pacific air northward. These temperatures represent staggering warmth for this Arctic Ocean zone during March when temperatures are typically about 54 degrees F (30 degrees C) cooler.
Major Warm Wind Invasion for the Chukchi This Week
(Multi-day above freezing temperatures for the Chukchi sea predicted for later this week is not a normal event for early March. Unfortunately, warm wind invasions like this one have become more common as the globe has warmed up due to human fossil fuel emissions. Image source: Earth Nullschool.)
This recent warm wind invasion is one of many observed over the past five years in which enormous bulges in the Jet Stream have pierced deep into what was once a mostly impenetrable pall of winter chill hanging over the Arctic. It’s a new atmospheric condition associated with rampant fossil fuel burning. One that has produced considerable damage to the Arctic environment by reducing sea ice coverage, threatening key species, melting glaciers and thawing permafrost.
Such incursions of extreme warmth bear the obvious marks of a failing of Arctic cold brought on by human-forced climate change and have tended to generate significant spikes in overall Arctic surface temperatures during fall, winter, and spring. This week’s warm air invasion of the Chukchi is expected to help push readings for the entire region above the 66 degree north latitude line to 4.5 C (8 F) above average for this time of year. That’s a strong departure for this region during the month of March when the typically more uniform advance of warmth in the lower latitudes tends to strengthen the Jet Stream — locking in Polar winter conditions in the far north through about the middle of April.
(The warm wind invasion of the Chukchi Sea is expected to help push overall Arctic temperatures considerably higher. Image source: Climate Reanalyzer.)
Far above average Arctic surface temperatures extending from October of 2016 through March of 2017 have been triggered again and again by these floods of warm air rising up from the south. And the net effect on Arctic sea ice volume has been little short of devastating.
Arctic Sea Ice Volume Lowest Ever Recorded During Winter, Comparable to Summer Volumes of the Early 80s
Arctic sea ice volume for both January and February of 2017 are now far below past record low trend lines for this time of year. Present record low monthly values for this past February are around 17,000 cubic kilometers vs previous record lows for the month during 2013 at around 19,500 cubic kilometers. Last February’s sea ice volume average of 17,000 cubic kilometers is about the same sea ice volume measured at the end of melt season in September of 1981. In other words, sea ice volume in winter now is comparable to sea ice volumes during the summers of the early 1980s.
(Arctic sea ice volume has never been this low during winter time. Image source: PIOMAS.)
All the record warmth flooding into the Arctic during 2016 and 2017 has undoubtedly contributed to these new record lows for sea ice volume. And a cooling of the Arctic surface relative to recent record warmth during March and April could soften this worrying trend somewhat. To this point, it is worth noting that sea ice extent measures are now closer to past record low trend lines. So there has been some slightly more hopeful inching back to slightly less ridiculously abnormal measures. A more positive movement that will likely take a hit as Arctic temperatures are predicted to significantly warm again this week.
Weather is Variable, But the Underlying Trend Looks Pretty Bad
Weather, as we should note, can be quite variable and may bring a more pleasant surprise later in the month. However, despite this potential, sea ice states are looking as bad or worse than they ever have at the end of freeze season. And it is worth noting that less ice coverage and volume leaves more dark water open to absorb the sun’s springtime and summer rays and less ice to reflect it. Furthermore, post La Nina periods, as we are now experiencing, tend to flush more atmospheric and ocean heat into the Arctic. So, despite the variable nature of weather overall, we’re in a bit of a situation where the systemic trend odds of a noteworthy sea ice recovery toward more rational trend lines pre-summer 2017 aren’t looking very good.
During late February, Antarctic sea ice breached the previous all-time record low for extent coverage since measurements began in 1978. And in the following days, sea ice extent measures near the South Pole have continued to creep lower, gradually extending into unprecedented ranges.
Record Melt During a Period of Considerable Global Heat
(This February, according to JAXA, the Antarctic sea ice extent measure hit a new all time record low. Image source: JAXA.)
Such pervasive heat is producing an ongoing trend of considerable sea ice melt in the Arctic — a trend that has been in place since record-keeping began in 1978. One that, all by itself, is strong enough to drag global sea ice measures lower and lower. The warmth is also producing land ice melt around the world — including glaciers in Antarctica, Greenland and across numerous mountain ranges.
(Global warming produced an identifiable global sea ice melt trend during the post year 2000 period. By 2016, that trend had become glaringly obvious. See final paragraph for further discussion. Image source: Wipneus.)
For 2016 and 2017, however, that thin veil of protection appears to have fallen. Previous record lows for Antarctic sea ice extent set in 1997 at 2.26 million square kilometers sea ice coverage during the austral summer month of February have now been exceeded by 100,000 square kilometers. As of yesterday, according to JAXA, the new record low stood at 2.16 million square kilometers.
(More above average temperatures predicted this week for Antarctica may extend sea ice record lows somewhat before refreeze sets in. Image source: Climate Reanalyzer.)
Antarctic refreeze typically starts during mid-February as seasonal cooling sets in. However, 2017’s warmth has driven an extension of late season melt with Antarctic sea ice continuing to decline through the end of February. At some point during the next week or two, however, refreeze is likely to finally kick in. But this return to rising ice coverage may be still be delayed somewhat by very warm Antarctic temperatures predicted to range as high as 2.9 C above average through the next five days.
Global Sea Ice Coverage Falling Rapidly
This year’s all time record low for Antarctic sea ice extent also comes at a time when the Arctic has been experiencing daily, monthly and seasonal record lows. Highly unseasonable temperatures have dominated ArcticĀ Fall and Winter during 2016 and 2017 — producing never before see low extent coverage during the period. As a result of record lows occurring at the same time in the north and in the south, overall global sea ice coverage has taken a considerable beating and the larger global sea ice trend is now strongly negative.
Throughout the record global heat of 2016 and on into 2017, the world’s sea ice has taken a merciless pounding.
In the Northern Hemisphere, extreme warming of the polar region pushed Arctic sea ice extents to record low daily ranges throughout the winter, spring and fall of 2016. And even today, after many months of daily record lows, sea ice in the Arctic remains more reduced (in most measures) than it has ever been for this time of year.
On the other side of the world, the story is much the same. For it now appears that the ocean region around Antarctica is about to experience an all-time record annual low for sea ice:
(JAXA Antarctic sea ice measure for all years since 1978 shows a strong challenge to the previous record low for extent set in 1997 [lower left hand corner of the graph]. With 2-4 weeks left in the melt season, the present measure is just about 170,000 square kilometers above the 1997 record low during Southern Hemisphere summer.)
Anomalous warmth, though less intense than in the Arctic zone, did finally begin to invade the austral polar region during Southern Hemisphere spring and summer (2016-2017). And since mid October, sea ice surrounding Antarctica has remained in record low daily ranges (see lower red line on the graph above). Wednesday, February 1st’s, JAXA measure of 2.42 million square kilometers of sea ice extent remaining is now just about 170,000 square kilometers above the previous record low sea ice extent set during mid-to-late February of 1997.
During this time of year, average drops in sea ice extent are around 50,000 square kilometers per day. So if all things were equal, we’d expect melt inertia to push the measure into new record low ranges over the next 3-5 days. Unfortunately, there appears to be an added impetus for melting as another blast of above average temperatures is being drawn into Antarctica underneath strong ridging features in the Southern Hemisphere Jet stream.
(Warmth building into Antarctica over the next two weeks may be the final straw that tips the near ocean region into new all-time record lows for sea ice extent. The above GFS model prediction for February 9th rendered by Climate Reanalyzer shows temperature anomalies predicted for Antarctica and the surrounding regions. Red to orange is warmer than average, blue to purple is colder than average.)
As a result, over the next week, temperatures around Antarctica and in the nearby region of the Southern Ocean are expected to average between 1.2 and 1.8 C above the already warmer than normal 1979 through 2000 average. Meanwhile, parts of West Antarctica’s coastal zone are expected to hit as high as 5-20 C above that average.
With more warmth on the way, with measures already striking nearly half a million square kilometers below previous daily record lows, and with at least two weeks remaining in the melt season, it appears likely that we are in for a new all-time record low for sea ice extent in the ocean region surrounding Antarctica. If the new record does occur, it will happen during a time when the Arctic is also experiencing daily record lows for sea ice during Northern Hemisphere winter and as the world is experiencing global temperatures in the range of 1 to 1.2 degrees Celsius above 1880s averages.
His report, based on this month’s bombshell National Snow and Ice Data Center statement, can best be described as an urgent call for action on the part of the global community to redouble efforts aimed at reducing the wide-ranging and expanding harms caused by the terrible warming trend we have artificially forced upon our world.
Neven is a kind, honest, and open soul. He is also one of the smartest and decent fellow bloggers I have had the good fortune of encountering in my many travels during my last four years of covering the slow motion global train wreck caused by our widespread and vastly irresponsible burning of fossil fuels. In other words, the man, in my view, has the moral and intellectual authority that many lack. We should listen to him.
Before the World Warmed, This Would Have Been a 1 in 30 Billion Probability Event
For, sadly, on the crucial issue of sea ice, a general muting of the subject has tended to continue despite a jaw-dropping plunge in both the coverage and volume of a substance so crucial to maintaining a stable global climate:
(Global sea ice extent fell off a cliff during December of 2016. The measure has now bounced back a little. But the global average remains significantly below past record lows for this time of year. Loss of so much sea ice can be highly disruptive to the climate system and related atmospheric circulation and precipitation patterns. Image source: NSIDC.)
Under past expectations of average, the statistical probability of such an event is approximately 1 in 30 billion. Of course, it’s pretty obvious at this time that a normal, natural variability is not the underlying cause of such a great loss of sea ice. That the warmth we added to the system has now greatly tipped the scales beyond anything representing what would have previously been considered a normal range. A range that since the year 2000 had already tended to dip below average more and more frequently. But one that has never seen so much ice lost.
Unprecedented Losses
This area of sea ice removed — enough to change how the face of our Earth looks from space — is approximately the size of two Greenlands (Note that sea ice loss does not directly contribute to sea level rise. But loss of protective sea ice can contribute to land ice melt — which does add to rates of sea level rise.). And it has been roughly split between the Arctic in the north and the Antarctic in the south.
If sea ice extent losses appear bleak, then sea ice volume losses seem even worse. Sea ice extent is a rough measure of the surface of the world covered by ice excluding gaps behind the leading ice edge. Sea ice volume, however, measures both the ice area — including gaps — and the ice thickness.
(Globally, we’ve lost about 1/3 of the total volume of sea ice since the 1980s. 2016’s record fall in the measure coincided with record hot global temperatures and an abnormal period of polar warming that continues on into 2017. Image source: Wipneus.)
Late 2016’s big drop included the approximate removal of 1/3 of the world’s sea ice volume when compared to 1981-2010 averages. In other words, 1/3 of all of the floating portion of the world’s cryosphere beyond the edge of anchored ice shelves had melted away during the period.
Record Global Temperatures as Prime Cause For North and South Pole Sea Ice Melt
In the north, extremely warm temperatures ranging from 2 to up to 7 degrees Celsius above average for the Arctic Ocean region have helped to drive these unprecedented fall and winter sea ice losses. In the south, warmer than normal surface conditions appear to have also helped to drive the amazing coordinate losses there. And overall, 2016 has shown warm to extremely warm conditions for both poles during a year in which global temperatures have spiked to around 1.2 degrees Celsius above 1880s averages.
(Extremely strong polar amplification during 2016 is the likely primary contributor to sea ice loss in both the northern and southern polar regions. Image source: NSIDC.)
Under polar amplification — a condition associated with the human-forced warming of our world — scientists expected that the polar regions would tend to warm faster than the rest of the Earth surface. And during 2016, this global warming related condition presented effects writ large. Ā The damage to sea ice, so far, has been monumental. And these losses have continued into 2017 — even if they are somewhat less below the record low line than during their period of maximum departure this past December.
Albedo Losses and a Bad Set-up for Arctic Summer
Sea ice loss generates its own form of amplifying feedback — in which already prevalent polar warming can worsen further. Less ice coverage means that during summer more of the dark ocean surface is presented to absorb the sun’s rays. This replacement of a white, reflective surface with a dark blue, absorptive one means that still more heat will tend to be trapped in the polar environment. In addition, during winter, less ice cover means that the warmer ocean beneath will tend ventilate more heat and heat-trapping water vapor into the polar atmospheres. And it’s this kind of self-reinforcing cycle that can tend to lock in the dangerous changes like worsening severe weather, worsening heatwaves in the middle and lower latitudes, and the increasing rates of land glacier melt and sea level rise that scientists have been warning about for so long. And it’s this kind of disruptive longer term climate trend that we are being drawn into at this time.
(Freezing degree days for the crucial 80 N region have significantly departed into record low ranges. The less freezing degree days, the closer this region is to thawing. Image source: Tealight. Data Source:Ā DMI.)
Nearer term, it appears that the polar heat which has already so greatly damaged the Arctic sea ice is set to stay. Over the next few days, the Arctic appears set to experience a powerful series of low pressure systems running in from the Barents side between Svalbard and Siberia. Neven warns that these storms will tend to push a considerable portion of the remaining thick ice out of the Arctic and through the Fram Strait. Over the next couple of weeks, global forecast models indicate that above freezing temperatures will tend to invade regions now covered by sea ice in Hudson Bay, Baffin Bay, and in the Chukchi Sea. Though the ice is trying to grow, such repeated insults will tend to keep ice coverage in record low ranges.
If this trend of warmth, storms and ice export continues through February, March and April — as it has during October, November, December and January — then the set up for the 2017 melt season would be about the worst we have ever seen. And that would tend to increase the likelihood of new record minimums being reached during September all while hastening the day when the Arctic experiences near ice free conditions. Lets hope that doesn’t happen. But, so far, the trends for the winter of 2016-2017, from pole to pole, have followed along the lines of a near worst case scenario.
In our cultural mythology we consider the North Pole to be this permanently frozen wonderland. And, during the 20th Century, the depiction was mostly true. Explorers venturing into the Arctic at that time found towering floes of ice — often measuring 15 to 20 feet high. And, up until the mid 2000s, the Arctic Ocean was permanently frozen from Continent to Pole even during summer. So adventurous skiers could strike out from northern Siberian, and treck to the pole over ice in months like June and July. Now such expeditions require the use of a kayak — if they occur at all.
(A warm storm over Svalbard joins with a chain of systems running from the North Atlantic to the Pole to drive gale force winds and above freezing temperatures into the Arctic in this December 22nd GFS model prediction. Image source: Earth Nullschool.)
This year, GFS model runs again show the potential for extreme above average temperatures in the region of the North Pole three days before Christmas. A storm in the Greenland Sea is predicted to strengthen to 940 mb intensity on the 20th and 21st. This system is expected to dredge warm air from the tropical North Atlantic and then fling it all the way to the Pole.
(Temperatures may rise to as high as 55 F [31 C] above average on December 22nd over sections of the Arctic near the North Pole. Note that this dynamic will tend to drive colder air out over the Continents — especially, in this case, toward Siberia. Also note that global temperatures remain well above average even when compared to the warmer than normal 1979 to 2000 time-frame. Image source: Climate Reanalyzer.)
This level of warmth during December for the Arctic is excessive and the expected readings are in the range of 25 to 31 degrees Celsius above average ( 45 to 55 Fahrenheit warmer than normal). These are near all-time record highs. But it is not just the extreme departures predicted for Wednesday that should be cause for concern, it’s the fact that such a high level of warmth for this region of the Arctic is occurring with a greater and greater frequency. For human-forced climate change — primarily driven by the burning of fossil fuels — is now in the process of radically changing the Arctic environment. And so much warming in the Arctic is a main driver of extreme Northern Hemisphere weather, of glacial melt contributing to sea level rise, and to severe loss of life among key Arctic species.
“We have still time to avoid the worst of it, but we have already opened a number of flood gates, one in West Antarctica, and several in Greenland.” — Dr Eric Rignot.
“This kind of rifting behavior provides another mechanism for rapid retreat of these glaciers, adding to the probability that we may see significant collapse of West Antarctica in our lifetimes.”Ā Ian Howat, Earth Sciences associate Professor at Ohio State University.
“Burning all the worldās coal, oil and gas would melt the entire Antarctic ice-sheet and cause the oceans to rise by over 50m, a transformation unprecedented in human history. The conclusion of a new scientific study shows that, over the course of centuries, land currently inhabited by a billion people would be lost below water.” — The Guardian.
*****
Massive Rift Forming in Larsen C
Larsen C. It’s the next big ice shelf on the butcher’s block in West Antarctica. And now it appears the shelf may be well on its way to facing the same fate as its companions Larsen A and Larsen B. That fate — disintegration and the ultimate release of glaciers that have been held in check for thousands of years into the world ocean.
It was only about 150 years ago that the Larsen Ice shelves were discovered. And the Larsen shelf system is thought to have been mostly stable throughout the last 12,000 years. But in 1995 Larsen A splintered into a million icebergs. And in 2002 the larger portion of Larsen B broke apart. Warming Ocean waters heated by an atmosphere loaded with greenhouse gasses did the damage. And now the same warm water currents that shattered Larsen A and Larsen B are endangering their larger cousin — Larsen C.
(Ice shelves and sea fronting glaciers serve as the flood gates keeping West Antarctica’s glaciers from spilling into the ocean and raising sea levels by as much as 20 feet. But warm ocean waters are causing these flood gates to melt and crack wide open. The above image shows a massive abyssal rift forming in the Larsen C ice shelf. A similar rift formed in the center of the Pine Island Glacier last year. A signal that the West Antarctic Ice Sheet could undergo a major collapse over the next 100 years. Image source: NASA.)
For today, a huge rift running through the ice shelf is about to break off a Delaware-sized iceberg into the Atlantic Ocean. The rift is broadening, deepening and extending. And it now measures 70 miles long, 300 feet wide, and a third of a mile deep. Once this enormous abyssal crack runs its course and causes about 10 percent of the ice shelf to break off, the big land-grounded glaciers sitting upon mountainous slopes behind the ice shelf will have less protection. They will increase their forward speed and contribute larger volumes of ice outflow to the growing problem of global sea level rise.
In this way, rifts in Antarctica’s sea fronting glaciers and ice shelves can be seen as giant cracks in the flood gates holding back enormous glaciers that, when released, will lift global sea levels by feet and meters.
Big Crack in the Pine Island Glacier
Closer to the center mass of West Antarctica, the Pine Island Glacier serves as one of the most important of these flood gates. In total, the large grounded glaciers in what could best be termed as an ice bottle neck hold back about 10 percent of all of West Antarctica’s interior ice mass. But just last year a huge rift that formed in this glacial buttress during 2013 cracked wide open — causing three massive icebergs totalling ten times the size of Manhattan to break off.
According to a new study, warm ocean water flooded far inland along the underside of the Pine Island Glacier. It ate away at its base and then spilled down-slope to cut out a melting hollow in the glacier’s heart. Ultimately, an enormous crack formed within the glacier 20 miles away from where the ice mass meets the ocean at the surface.
(Massive crack forms in the Pine Island Glacier, then causes three very large icebergs to break off during 2015. A new study finds that the Pine Island Glacier is melting from the inside out and an inland flood of warm ocean water is causing both the melt and the formation of large rifts in the ice. Scientists believe that these could be the first signs of a significant collapse of West Antarctica that could occur without our lifetimes. Video source: Ohio State.)
Pine Island Glacier is particularly vulnerable because it sits on a reverse slope. In other words, a below sea level bed slopes lower as you progress toward the center of the Continent. And, in fact, large portions of West Antarctica are below sea level (see topographic image below).
The Larger Picture — Glacial Flood Gates are Cracking Open
Larsen C and Pine Island Glacier serve as but two of the many flood gates that run all along the coast of West Antarctica and East Antarctica. But the increasing flows of warm water coming in from the ocean and a related rise in the frequency of events where large masses of ice break off from buttressing glaciers and ice shelves has put West Antarctica in danger of facing a near term collapse.
(Islands encased in ice. Much West Antarctica, on the left side of this topographic image, sits between 0 to 6,000 feet below sea level. If the buttressing glaciers and ice shelves like Larsen C and Pine Island are lost, there is little to prevent the warming oceans from flooding inland and setting off a rapid cascade of melt and seaward outflow. Scientists now believe that such a collapse could happen within our lifetimes. Image source: Antarctic Bedrock.)
With information from new glacial stability assessments in hand, Antarctic ice specialists are warning that the western region of this frozen land may collapse in a major melt event that over the next 100 years could raise sea levels by 10 feet. And West Antarctica is but one of three global regions — including Greenland and East Antarctica — capable of contributing significant glacial outbursts during this period.
For in the Arctic Ocean above the 80 degree north latitude line which encircles the crest of our world, temperatures today are around 17 degrees Celsius above average. These are the warmest temperatures for this region ever recorded. And they include numerous locations in which temperatures spike to well above 20 C (36 F) warmer than average.
(Temperatures above the 80 degree north latitude line during mid November are about equal to what you would typically expect for late summer. This record warmth in the Arctic is notably severe and could produce serious near term climate and weather impacts. Image source: DMI.)
Taken in total, this region — one that includes the North Pole — is currently experiencing temperatures that it would typically see from September 15 through 21. In other words, it’s about as warm now, on November 14th, in the zone surrounding the North Pole as it typically is during the last week of summer.
It wouldn’t be quite so bad if temperatures had simply rocketed to new highs on this particular day as part of a wild temperature swing. Unfortunately, readings instead have remained consistently high throughout autumn. They have levitated off the baseline 1958-2002 average range for the better part of 80 days. And as temperatures maintained near late summer or early fall averages, the departure from normal (represented by the green line in the graph above) has continued to intensify throughout November. Such long-term maintenance of high temperatures risks producing some severe lasting impacts on both the Arctic and the global environment.
The North Pole’s Big Red Hole
The temperature range we see now is nothing less than astonishing and, to this particular observer, terrifying. A huge hole has been blown in the heart of what should be the building cold of winter. And if it doesn’t reform soon, it will have some serious knock-on climate effects to include worsening atmospheric circulation changes, related increasingly extreme weather, impacts to growing seasons, impacts to sea ice, impacts to Greenland ice, and impacts to life in the Arctic and beyond.
(Today, large swaths of the Arctic Ocean are expected to see temperatures hit 20 C [36 F] + warmer than normal. These temperatures are so high that recently ice-covered sections will, over the next five days, experience temperatures between -2 C and 0 C — or warm enough to produce temporary melt. Such a condition has never been witnessed to the extent that it is now so late in the year. A clear sign that global warming is starting to bite deeper than we had hoped. Image source: Climate Reanalyzer. Note — the map shows temperature departures above [red shift] and below [blue shift] the, already warmer than normal, 1979-2000 baseline average.)
This record fall warmth appears to be part of an ever-more-pervasive ‘death of winter’ type scenario related to human-caused global warming. And unless temperatures in the Arctic revert back toward base-line pretty soon, we are at increasing risk of hitting some state-change tipping points. In particular, these center around a nearer term loss of Arctic Ocean ice than expected. An event that could happen this year if we experience an anomalously warm winter followed by a similarly warm summer — but one that many experts expect to hold off until the 2030s. An alteration that, longer term, under the continued fossil fuel burning presently promoted by the Trump Administration, basically removes winter as a season pretty much altogether (at least as we know it).
I sincerely hope that we see a return to baseline temperature conditions in the Arctic soon. But as the days roll by, this seems less and less likely. Warm winds keep flowing in both from the Barents and the Bering. And the centers of coldest Northern Hemisphere regions are well displaced toward Siberia and Greenland. If this situation continues, implications for summer sea ice during 2017 could be pretty rough (more on this in the follow-on post). And it’s at the point where we hit ice-free summer states in the Arctic Ocean that some very radical regional, hemispheric, and global changes (which produce even worse effects than some of the bad outcomes we’ve already seen) will be well underway.
“…there is now strong evidence linking specific [extreme] events or an increase in their numbers to the human influence on climate.” —Ā Coumou and Rahmstorf 2012.
“We are confronted with the fierce urgency of now. …We may cry out desperately for time to pause in her passage, but time is deafĀ to every plea and rushes on. Over the bleached bones and jumbled residues of numerous civilizations are written the pathetic words, ‘Too late.'” — Dr. Martin Luther King, Jr.Ā [emphasis added]
****
2016 is on track to be a record-hot year for the history books. Accumulations of heat-trapping gasses in the range of 402 ppm CO2 and 490 ppm CO2e have pushed the global temperature trend into an inexorable upward rise. Meanwhile, increasingly severe climate change-related events ranging from mass coral bleaching, to glacial and sea ice melt, to tree death, to ocean health decline, to the expanding ranges of tropical infectious diseases, to worsening extreme weather events have occurred the world over. This global temperature spike and related ramp-up of extreme events continued throughout a year that is setting up to follow 2014 and 2015 as the third record-hot year in a row.
With data now available through September, 2016 annual record (~1.25ĀŗC above late 19th C) seems locked in. pic.twitter.com/Btp3Vutakn
(2015 saw a substantial jump in global temperatures. 2016 is also on track to hit new record highs. The above graph, by Gavin Schmidt of NASA GISS, provides a vivid illustration of an inexorable warming trend with 2016 as the hottest year yet. According to Gavin, a strong new record for 2016 appears to be a lock. Image source: Climate of Gavin.)
As a result, it appears likely that 2016 will see temperatures in the range of 1.19 C to 1.25 C hotter than 1880s averages. That’s about 0.1 C hotter than 2015 — which is pretty significant considering the fact that the average rate of decadal warming (the rounded rate of global warming every 10 years) has been in the range of 0.15 C since the late 1970s. This year’s temperatures now appear set to exceed 1998’s values by around 0.35 C — or about one-third of the entire warming total seen since large-scale human greenhouse gas emissions began during the late 19th century. This excession should permanently put to rest previous widely circulated false notions that global warming somehow stopped following the strong El Nino year of 1998.
Many responsible sources are now warning that current temperatures are uncomfortably close to two major climate thresholds — 1.5 C global warming and 2.0 C global warming. At the current rate of warming, we appear set to exceed the 1.5 C mark in the annual measure in just one to twoĀ decades. Hitting 2 C by or before mid-century has become a very real possibility. Scientists have been urging the global community to avoid 2 C warming before 2100 (and 1.5 C if at all possible), but the current path brings us to that level of warming in just over 30-50 years, not over the 84 years remaining in this century. And just maintaining current rates of warming without significant added feedbacks from the Earth System would result in Earth hitting close to 3 C warming by 2100 — a level that would inflict severe harm to life on Earth, including human civilizations.
(According to NASA, September 2016 edged out September 2014 as the hottest September in the 136-year climate record. This occurred while theĀ Equatorial Pacific wasĀ flipped into a cool phase, which tends to lower global temperatures. Despite this natural variability-related switch pulling global temperatures down, NASA shows a globe in which few regions experienced below-average temperatures and where the highest concentration of record-warm temperatures are centered near the northern polar region. This display of counter-trend warming and strong polar amplification are both signature effects of human-caused climate change. Image source: NASA GISS.)
Focusing back on 2016, it appears the La Nina that struggled throughout August and early SeptemberĀ is again making a decent attempt to form,Ā at least as a weak event. This should tend to pull October, November and December temperatures into the 1 to 1.1 C above 1880s departure range. As a result, final averages for 2016 should be slightly lower than averages for the period running from December to September. But, as noted above, we are still on track to see a very significant jump above the 2015 end atmospheric temperature totals.
Climate Impacts from Added Global Heat Continue to Worsen
(In the mid-2010s, Earth entered a temperature range averaging 1 C above pre-industrial levels. Such temperatures begin to threaten key climate impacts like permafrost thaw, 3-4 meters of sea-level rise from West Antarctic Ice Sheet melt, risk of up to 80 percent mountain glacier loss, complete Arctic sea ice loss during summer, and 6-7 meters of sea level rise from Greenland melt. In the near 1 C range, risks of these impacts, though a possibility, remain somewhat lower. But as temperatures approach 1.5 and 2 C above pre-industrial levels, risks rise even as West Antarctic glacial melt and polar ocean acidification start to become serious factors. Image source: Solving the Climate Stalemate.)
At 1 to 1.3 C above 1880s levels, we should see a quickening in the rate of sea-level rise. How much is uncertain. However, this temperature range is very close to peak Eemian Stage levels when oceans were around 15 to 25 feet higher than they are today. The current rapid rate of temperature change will also continue to have worsening impacts on creatures who are adapted to inhabit specific climate zones. The rapid rise in global temperatures is forcing an equally rapid movement of climate zones toward the poles and up mountains. This affects pretty much all life on Earth and unfortunately some species will be hard-pressed to handle the insult as certain habitats basically move off-planet. This impact is particularly true for corals, trees and other species that are unable to match the rapid pace of climateĀ zone motion. We have already seen very severe impacts in the form of mass coral and tree death the world over. Warming in the 1 to 1.3 C range also provides an increasing ocean stratification pressure — one that has already been observed to increase the prevalence of ocean deadĀ zones and one that will tend to shrink overall ocean vitality and productivity.
Fierce Urgency For Climate Action
Despite all these negative impacts, we are still currently outside the boundary of the worst potential results of climate change. Stresses are on the rise from various related factors, but these stresses have probably not yet reached a point of no return for human civilization and many of the reefs, forests, and living creatures we have grown to cherish. Rapid mitigation through a swift transition away from fossil fuels is still possible. Such a response now has a high likelihood of successfully protecting numerous civilizations while saving plant and animal species across the planet. That said, at this point, some damage is, sadly, unavoidable. But the simple fact that we are now starting to face the harmful consequences of a century and a half of fossil fuel burning is no excuse for inaction. To the contrary, the beginning of these harms should serve as a clarion call for our redoubled efforts.
Globally,Ā it’s been a record-hot year. But nowhere has seen so much anomalous warmth during 2016 as the Arctic. As melt season draws to a close, some dramatic effects are now becoming visible in the NASA satellite shots. Large regions near the North Pole are losing their white covering of sea ice and showing the telltale blue-black of open water:
(Large areas of open water are visible near the North Pole in this LANCE MODIS satellite shot.)
The above image, provided by NASA, shows the Northern Hemisphere polar region on September 5, 2016. To get some sense of the size of this region of low-concentration sea ice, the bottom edge of this capture representsĀ approximately 300 miles. For a point of reference, the North Pole can be seen where the lines of the satellite image frames converge in the lower left-hand side of the capture.
All throughout this satellite shot, we see large expanses of open water. The smaller openings are five to ten miles wide, with very large openings ranging as much as 50 miles long appearing as well. Cloud cover is present throughout the image and blocks some visibility to open regions on the Siberian side of the Pole (upper section of the image) and over the Pole itself (lower left).
(Arctic sea ice area coming uncomfortably close to 2012 record lows in this NORSEX SSM model summary.)
Loss of ice in this region of the central Arctic is similar to and perhaps more extensive than that seen during 2010 and 2013. InĀ 2013, strong storms combined with weakened ice states resulting in severe melt near the North Pole, with ice becoming more dispersed throughout the Arctic. This year, both storms and heat have hit the ice hard. Now, ice edge extent is far lower than in 2013 even as low-concentration ice floes and open water are visible near the Pole. As such, the overall health of sea ice is dramatically worse during 2016.
Unfortunately, sea ice buoy observations near the North Pole have seen cuts to research funding and no camera buoys are operating near the Pole. Otherwise, we’d probably be treated to images like this:
(North Pole Camera 2 goes for a swim during the summer of 2013 as a period of extensive near-polar melt set in. Most indicators show that ice conditions at the North Pole this summer were as bad or worse. Image source: North Pole Environmental Observatory.)
The large, open sections of water near the Pole appeared as sea-ice extent and area in many measures fell to second lowest on record for this time of year. Some measures (shown in the middle image above) have come uncomfortably close to the 2012 record low line.
Overall, 2016 is a very bad year for sea ice. And the weird prospect of polar bears (or anything else) being forced to swim at the North Pole is not at all something to brighten one’s day.
(The Beaufort Sea Ice has been shattered under the weight of a relentless a high pressure system that has dominated this region of the Arctic for about a month. Now, a freak early-season invasion of above-freezing temperatures is set to level another melt-forcing blow at a region that is very sensitive to the worsening impacts of human-caused climate change. Image source: LANCE-MODIS.)
Extreme Fires, Sea Ice Loss in a Context of Ever-Worsening Climate Change
Beneath the high, much warmer than normal airs have settled in over the Northeast Pacific, over Western Canada, and over Alaska. These much hotter than typical temperatures have provided fuel for a raging start to fire season in such far northern regions. In Canada, nearly a hundred and fifty fires now burn. Sparked by never-before-seen heat and dryness, the worst of these blazes has now consumed 620 square miles of land and more than 1,600 structures around the city of Fort McMurray — forcing about 90,000 people to evacuate and threatening Canada’s hothouse gas emitting tar sands production facilities. Meanwhile, in Alaska, the heat has been lighting off forest fires since as early as February. A month that once only featured a climate of deep chill and heavy snow — but one that in the new, greenhouse gas warmed, world features an ominous winter burning.
The high has also extended it atmospheric influence up into the Polar zone — joining a powerful ridge that has torn away and shattered sea ice across the Central Arctic since at least mid-April. Opening wide areas of dark, heat absorbing water and contributing to never-before-seen low levels of sea ice extent and volume for May.
May Arctic Heatwave Builds
As of Sunday, this lumbering high began a big shift to the west — expanding its influence on into the North-Central Pacific and the Bering Sea. There, it rallied a warm flood of airs in the form of northbound winds. Warm winds now readying to make a big push into the Arctic Ocean later this week.
(Huge northward thrust of warm air seen in this Earth Nullschool capture for predicted May 12 conditions. Note the large swath of above-freezing temperatures invading the Arctic Ocean as readings in Northern Alaska and the Northwest Territory of Canada hit the upper 60s and lower 70s. Regions that are typically still covered in snow experiencing conditions that would be somewhat warmer than normal May weather for the US West Coast city of San Fransisco more than 2,000 miles to the south. Image source: Earth Nullschool.)
These winds are expected to build northward along a warm frontal zone over Northern Alaska and the southern reaches of the Beaufort and Chukchi Seas on Monday. Linking up with two low pressure systems forming over the East Siberian Sea by Wednesday morning, this wave of heat rising out of the Pacific is expected to have expanded into that sea and taken in all of the Chukchi and half of the Beaufort. By Friday, this northward drive of above freezing airs is expected to have taken in about a third of the Arctic Ocean region in total.
Over Alaska and the Northwest Territory near the Mackenzie Delta, temperatures are expected to rise into the upper 60s to upper 70s Fahrenheit (20-25 C). These are temperatures 20-28 degrees F (9-16 C) above average for early-to-mid May and readings seldom seen for this region even during June. Such high temperatures will hasten melt of any remaining snow or ice and spike fire hazards over this Arctic zone.
(Two lows on the Siberian side of the Arctic and a high over southern Alaska and the Northeast Pacific are predicted to drive an extreme level of heat into the Arctic starting Monday and continuing on through the end of this week. This extraordinary northward thrust of warmth appears set to tip the scales swiftly toward high Arctic thaw conditions that are typically experienced during June. Such a high degree of added heat will have a profound effect on both sea ice and remaining snow cover. Image source: Global and Regional Climate Anomalies.)
Savaging of the Sea Ice to Continue
Over the Arctic Ocean, conditions will arguably be worse. Temperatures in the near coastal waters of the Beaufort Sea could rise to as high as 41 degrees F (5 C) while temperatures in the range of 32-38 F (0 to 3 C) are expected to cover a very wide zone of Arctic waters invading about 600 miles of the thinning sea ice area between the Mackenzie Delta and the North Pole and covering a breadth of around 800 miles from the Canadian Archipelago to the shores of the East Siberian Sea. These temperatures are also 20-28 F (9-16 C) above average and are more like the atmospheric readings one would expect during July over these typically frozen Arctic waters.
It’s not just the high temperatures that are a concern with this invasion of extreme heat running into the Arctic. It’s also its sheer scale — taking in about 30 percent of the Arctic Ocean zone, most of Alaska, a large region of Northeast Siberia, and a big chunk of Northwest Canada. Such a huge warm air injection will be taken in by the larger circulation over the Arctic Ocean and greatly shrink the remaining pool of cooler airs — driving temperatures to push more rapidly above freezing.
(Off-the charts record Arctic heat shows up in a -1012 freezing degree day anomaly during 2016. In an average year, the Arctic experiences about 6,000 freezing degree days. We’ve lost more than 1/6th of that during 2016, which is basically like knocking one month out of the Polar Winter. Image source: CIRES.)
To this point, temperature anomalies above the 66 North Latitude Line are predicted to continue in the range of 2.5 to 3.5 C above average for the entire Arctic region into mid-May during a time of year when readings tend to moderate. In other words, this range is well above average for this time of year and continues a trend of record Arctic heat for 2016 that began during January. One that has now pushed freezing degree days (FDD) to a never-before-seen -1012 anomaly — which is like losing one entire month out of the coldest time of year in the Arctic.
(DMI’s sea ice volume measure enters a new record low range during early May. Note how swiftly comparative sea ice levels have fallen since February and March of this year. In essence, we are currently just below the record low 2012 launching pad all while facing an unprecedented level of heat building up in the Arctic. Image source: DMI.)
In this context of extreme Arctic heat and already record low Arctic sea ice levels, we continue to expect new record lows to be reached by the end of the melt season — pushing past one or more of the low marks set during 2012 and possibly testing near zero sea ice ranges (blue ocean event) of 80 percent volume loss since 1979 and below 750,000 square kilometers of sea ice area and 1.5 million square kilometers of sea ice extent by September of this year.
It didn’t take long for Arctic sea ice to start to respond to a fossil-fuel based accumulation of hothouse gasses in the Earth’s atmosphere. For since the 1920s, that region of ocean ice along the northern polar zone has been in a steady, and increasingly rapid, retreat. Rachel Carson wrote about the start of the Northern Hemisphere ocean ice decline in her ground-breaking 1955 book — The Edge of the Sea.
It’s a warning that has been written in the record of the ice itself. A decline that since 1979 has followed a steepening descent curve. An overall downward trend punctuated by the abrupt and severe loss years of 2007 and 2012. A trend that has, nonetheless, featured a few weak challenges in the form of pseudo-recovery years like 2008, 2013, and 2014. A precipitous loss that, all too soon, will likely terminate with abrupt finality in temporally-expanding blue ocean events. Periods when little or no sea ice is observed on the surface of oceans and seas within the Arctic.
(After the warmest Winter and early Spring period on record, Arctic sea ice extent, area and volume are now at or near new record lows. With abnormal heat persisting and with the ice showing an extraordinary lack of resiliency, there appears to be a heightened risk that Arctic sea ice will hit new record all-time lows by September and October of 2016. Image source: JAXA.)
Why should we talk about blue ocean events now? Well, we have only to look at the sea ice record to find that substantial losses have occurred during single years. Years when Arctic heat hit new peaks — lining up with severe adverse weather conditions to take a terrible toll on the ice. Years like 2007 when nearly 2 million square kilometers of ice was lost over the previous year and 2012 which featured about 800,000 square kilometers of extent lost below the 2007 low mark. And if a blue ocean event does happen, it will be during one of these severe loss years.
Extremely Frail Sea Ice During the Spring of 2016
2016 and 2017 could be years when such precipitous declines occur. Heat from an extraordinarily powerful El Nino already skipped over the weakening atmospheric wall of the Jet Stream to invade the High Arctic during Winter of this year. As a result, Winter and Springtime Arctic temperatures are currently at their warmest levels ever recorded.
All this extra heat is doing a number on the ice. Sea ice extent, volume and area, which had experienced a false recovery during the years of 2013 and 2014, have again retreated to seasonally record low levels. In particular, the new near record low seasonal volume measure is disturbing. For while area and extent measure the expanse of surface ice as visible from above, volume measures the ice in three dimensions — giving a better idea of overall resiliency or lack thereof. It’s worth noting that the PIOMAS volume measure is based on a model of assimilated observational data. And, as with any model, there are a few assumptions built in. But overall, PIOMAS has tended to provide data that has matched with other observational findings.
Sea ice frailty seen in the measures is also verified by current satellite observations of the ice surface. This frailty is particularly visible in the region of the Beaufort Sea north of Alaska and Canada. There, extensive fracturing of the ice is clearly visible in yesterday’s MODIS satellite shot. Here we find huge regions of thin ice and open water as the torquing influence of a powerful high pressure system has turned the greatly weakened Beaufort ice into a sea of ice cubes.
During recent years in the post 2012 timeframe, Beaufort ice has shown a considerable lack of resiliency to fracturing. This is particularly disturbing as, historically, the Beaufort Sea has tended to house the thickest, toughest ice in the Arctic. If such a great former bastion for the ice can now be torn to ribbons by the slightest fluxes of wind and weather, then the sea ice is, indeed, in a rather wretched state. And last year, just this kind of early fracturing and warm up in the Beaufort greatly contributed to an overall return to the trend of an Arctic sea ice death spiral in 2015.
Last year’s April cracking event caused a lot of fragmented multi-year ice to be transported all the way up to the Chukchi Sea (see here), leaving a vulnerable looking barrier on the Pacific side of the Arctic. When this was followed by an early heat wave in May (see here), the ice in the Beaufort and Chukchi Seas received a beating it never really recovered from during the rest of the melting season. This was also because continental snow had melted out really quickly, making it possible for warm winds to blow in from the land.
Heating From Both Water and Land
Compared to last year, this year looks quite a bit worse. A wide-ranging Beaufort break-up is happening on the back of last year’s losses and is concurrent with new record and near record low sea ice extent, area and volume values and is happening during a period in which Arctic heat has hit new all-time highs. The result is a risk of compounding melt factors hitting the greatly weakened ice all at the same time.
Locally, the kind of widespread fracturing we now observe can result in a loss of protective reflectivity for the sea ice. As the Springtime sun rises and more of its direct rays fall upon the ice, darker thin ice patches and areas of open water will absorb more of the solar heat. That extra heat will then go to melting the islands of thicker ice that remain.
This situation can generate a compounding effect of ice losses if weather conditions and atmospheric temperatures line up. In addition, loss of the thicker sea ice cap during break-up can result in the ventilating of heat from the warmer waters beneath the ice. In fact, it is the heating of waters beneath the sea ice by means of current transport of warming ocean waters from around the world and into the Arctic that is one of the chief drivers of Arctic Ocean ice losses as the globe has been forced to warm by human fossil fuel emissions. So not only does an ice crack up in the Beaufort reduce the ice’s resiliency to the sun, it also tears the lid off the deeper ocean warming rising up from below.
(Lower albedo due to ice fracturing results in more of the sun’s rays being absorbed into the ocean surface. A warmer Arctic Ocean surface then radiates more heat into the surrounding environment. Such conditions can result in periods when temperatures over the, previously colder and solidly frozen, Arctic Ocean are far warmer than even over land masses on the verge of tipping into a springtime thaw. Image source: Earth Nullschool.)
During Arctic Spring, when land surfaces are now retaining snow cover even as the sea ice breaks up, the effect of lower albedo and ocean heat ventilation can be found in the form of warmer temperatures over thin ice, broken ice, and in open water regions when compared to nearby land masses. Such a condition of newly added heat over ocean zones can have substantial impacts come Summer if melt-favorable weather patterns continue to hold sway. The result is a kind of melt synergy developing between the land, the waters, and the sun. Early on, during Spring, the warmer ocean zone weakens ice and provides warm air pools that aid in the initiation of snow melt over adjacent land. Then, as land warming ramps up, the warm winds coming from regions of early snow withdrawal provide further pressure to the already greatly weakened ice.
A Big Burly High as the Final Ingredient
Weather patterns that favor melt during Spring and Summer include powerful high pressure systems dominating large regions of the Arctic. And for much of the past week, an extremely intense high in the range of 1040 to 1045 mb has stooped over the Beaufort, torqued the ice, and developed the kind of strong clockwise wind flow that has tended to result in fracturing, ice compaction, and the opening of darker ice and open water areas (please read Neven’s fantastic recent blog on this observation here).
This kind of weather system is the last ingredient necessary to trigger an early, rapid melt for the side of the Arctic where the last of the thick, old ice now remains. And it appears that, for at least two weeks, such conditions will hold strong sway over the Beaufort.
So overall, more and more conditions are lining up to deliver a ramping up of melt pressure on the Arctic sea ice. Record atmospheric heat, early break-up, record low or near record low area, extent, and volume, and a powerful high pressure system over the Beaufort do not at all bode well. In fact, this looks like a near perfect early season set-up for a record melt in 2016 should this clearly ominous trend continue.
The alarming rate of change we are now witnessing in our climate as a result of greenhouse gas emissions is unprecedented in modern records. — Petteri Taalas, Secretary General of the World Meteorological Organization
*****
It would be a bit of an understatement to say that the global scientific community is reeling. Sure, the various scientists and researchers knew that a massive accumulation of greenhouse gasses in the Earth’s atmosphere and oceans was beginning to take a serious toll. They knew that ocean heat content in the top 2,000 meters of the world ocean system (accounting for 93 percent of Earth System warming) was going through the roof. And they knew that this warmth was going to bleed out in a seriously big and bad way as a record El Nino swept through the global climate system during 2014, 2015 and 2016.
(Temperature averages for 2016 are so far about 1.22 C above the 1951 to 1980 baseline or about 1.44 C above 1880s averages. Though temperatures should fall somewhat as El Nino cools off in the Pacific, it’s likely that 2016 comes in well hotter than the previous three record warm years. Current guidance indicates a likely range of 1 to 1.13 C above the 1950 to 1981 baseline or 1.22 to 1.35 C above 1880s averages. This is uncomfortably close to 1.5 C warming levels the Paris Climate Conference has stated a desire to avoid by the end of this Century. Image source: Climate Central.)
But I’m pretty sure if you told these same scientists a year ago that February of 2016 would see temperatures in the range of 1.43 to 1.57 degrees Celsius above averages seen during the 1880s, as we see now in the three major global climate monitors (here, here and here), they’d have responded with not just a little incredulity.
āThe startlingly high temperatures so far in 2016 have sent shockwaves around the climate science community,ā said David Carlson, Director of the World Climate Research Programme, in a recent World Meteorological Organization press release. Dr Michael Mann, a climate scientist at Penn State echoed these sentiments — āI think we all knew this would be a warm year due to the major El NiƱo event. But I donāt think any of us expected such remarkable and persistent record-breaking warmth.ā
It’s a new extreme record warmth that comes immediately following a major global temperature ramp-up during 2015 — a period that the World Meteorological Organization is calling alarming due to an increasing number of severe climate impacts. “Our planet is sending a powerful message to world leaders to sign and implement the Paris Agreement on climate change and cut greenhouse gases now before we pass the point of no return,ā said Mr Taalas, the WMO’s Secretary General in a press release announcing its most recent State of the Climate annual report.
World Meteorological Organization — Dangerous Climate Change is Here
The new report entitled — Hotter, Drier, Wetter; Face the Future — is scheduled to be released on March 23rd. It highlights a world undergoing a fundamental and wrenching shift in its once-stable climates. A shift that became all the more vivid during 2015 as the pace of major climate change related events rapidly ramped up.
(The WMO notes a number of extreme and significant climate change related events in its most recent annual report. A series of events that, according to monthly monitoring by NOAA, continued on into a record hot February of 2016. Image source: NOAA.)
According to WMO, 2015 also saw some of the most intense tropical cyclones ever recorded with Pam, a category 5 storm, making landfall near Vanatu, Mexico and Patricia reaching a peak intensity of 346 kilometers per hour — the strongest storm ever to emerge in either the Eastern Pacific or the Atlantic basin. A very rare hurricane Chapala also churned ashore in Yemen. An event that was immediately followed by a second similar cyclone — Megh.
Overall, WMO notes that:
The year 2015 made history, with shattered temperature records, intense heatwaves, exceptional rainfall, devastating drought and unusual tropical cyclone activity… That record-breaking trend has continued in 2016. The theme Hotter, Drier, Wetter. Face the Future highlights the challenges of climate change and the path towards climate-resilient societies.
In confronting that challenge, WMO calls for a redoubled effort to rapidly reduce global greenhouse gas emissions to prevent runaway global warming. However, WMO realistically notes that current national pledges will likely result in about 3 C worth of warming this Century unless even more aggressive action causes fossil fuel based emissions to peak soon and swiftly decline.
WMO recognizes that increasingly intense droughts, heatwaves and wildfires will inevitably emerge due to the amount of warming that is already locked in. WMO recommends a set of climate resiliency enhancements to aid in climate change related disaster response. However, it is unclear if even the WMO realizes the level of threat and difficulty a rapidly warming world is now facing from an increasingly dangerous and destabilized global climate system.
In other words — that disorienting sensation scientists got from looking at these terrifying temperature jumps during February is about to become a lot more common for pretty much everyone. For from the weather to the ice to the oceans to the very complexion of the sky — things are about to get pretty darn weird. Worse and weirder if we don’t shut down fossil fuel based carbon emissions soon.
(Note: RS estimated temperature departures for 2016 have been revised upward to 1.22 to 1.35 above 1880s averages [1 to 1.13 above the NASA 20th Century baseline] in light of very high January, February and March global temperature anomalies.)
Arctic sea ice volume hit near new record lows during February. That’s kinda a big deal. What it means is that whatever sea ice resiliency was recovered during 2013 and 2014 are now mostly gone. That record all-time lows for sea ice set in September of 2012 are likely to see a serious new challenge during 2016 and 2017.
*****
A flood of severe Arctic heat — flowing up through the Barents and Greenland seas in the East and over Alaska and the Bering Sea in the West — has been hammering the Arctic Sea Ice all Winter long. During February of 2016, new record lows in sea ice extent and area were breached. Meanwhile, sea ice volume — as measured by PIOMAS — also greatly declined to hover just above previous record lows for this time of year set in 2011.
(Arctic sea ice volume, as measured by the Polar Science Center, plunged back to near record low territory during February. Many consider sea ice volume to be the key measure determining sea ice health. So these new drops in the volume measure are a bit spine-tingling. Image source: Wipneus.)
Looking at the above graph, provided by Wipneus, and based on model and observation data collected by the Polar Science Center, it appears that for some days during February, volume measurements even briefly descended into record low territory. As of early March, volume totals were in the range of just above 20,000 cubic kilometers — beating out 2012 as second lowest volume on measure and hovering just above 2011.
Winter Warming Grand Finale
Over the past ten days, abnormal warmth in the Arctic has faded somewhat. The lower Latitudes have heated up with the onset of spring and this has tended to strengthen the circumpolar winds. Perhaps the last bit of seasonal change that can have this effect given the alterations to atmospheric circulation produced by a human-forced warming of the globe and a particular high concentration of this added heat centering on the Arctic.
Ironically, the time-frame of late February to mid-March is when the higher Latitudes in the Northern Hemisphere tend to experience their coldest temperatures. During 2016, we did see some of this atmospheric effect take hold. As a result, temperatures in the High Arctic above the 80 degree North Latitude line have fallen from record warm readings in late February to far above average warm temperatures over recent days.
(Ever since Early January, Arctic temperatures have been in near record or record warm ranges. This consistent heat has resulted in the warmest Winter temperatures ever experienced for the region above the 80 North Latitude Line. Image source: CIRES/NOAA.)
Today, another very strong pulse of warmth is building up through the region of the Barents and Greenland seas. This heat pulse representing yet another warm wind event for 2016. Another very strong south to north atmospheric draw flooding in front of yet another chain of strong low pressure systems in the North Atlantic. A flow of heat drawn up from the tropics and delivered to the Arctic that will briefly drive regions near the North Pole above the -2 C melting point of sea ice even as a wide wedge of 20 degree Celsius above average temperatures invades a region stretching from Northeast Greenland to the North Pole and back to the isle of Novaya Zemlya in Russia.
Overall, the sea ice in this region is much weaker than normal. Volume is greatly thinned as both the relentless heat influxes and strong sea ice export through the Fram Strait this Winter has leeched the area of thick ice. Most sea ice measures show a loss in concentration and volume for this area. But we’ll know more as the Earth tilts back toward the sun and visible satellite coverage again takes in the entire Arctic.
Given atmospheric changes taking place with Spring — where Continental and lower Latitude warming hold greater sway over atmospheric circulation — this may be the last burst of heat we see through this zone that produces such high temperature anomalies. A grand finale for the record warm Arctic Winter of 2016.
(Warm North Atlantic Winds are predicted to blow into the Arctic yet again on Saturday, March 12. These winds will push temperatures over a broad region of sea ice to near freezing, driving such anomalously warm temperatures all the way to the North Pole. Image source: Earth Nullschool.)
To be clear, long range model forecasts do identify far above average sea surface temperatures and above average 2 meter air temperatures for this region through Spring and on into Summer. However, the Arctic overall is not as capable of producing such high temperature anomalies during Summer as it is during Winter when the human supplied greenhouse gas overburden and the related warming of the oceans holds a much stronger sway — re-radiating an insane amount of heat throughout the long polar night.
High Arctic Temperature Anomalies Predicted to Fall-off For a Short While, Melt Potential Through Summer Looks Rather Bad
To this point, it appears the Arctic may be in for a brief respite on the 3-7 day horizon. GFS model runs indicate overall cooling for the region above the 66 North Latitude line and temperatures above 80 North may see their first period of near average temperatures since late December of 2015. This respite for the High Arctic, though, comes as temperatures in the Sea of Okhotsk, the Bering, and along Hudson Bay are expected to warm.
(Arctic sea ice area remains at record low levels during March of 2016. Image source: Cryosphere Today.)
It’s a mixed signal that may continue some of the very slight Arctic sea ice rejuvenation we’ve seen during March — with sea ice area still in record low territory, but with sea ice extent edging back to second lowest on record and just slightly above 2015.
To be clear, we’re at a very low launching pad for the start of melt season in 2016. Record low or near record low sea ice volumes in February and continuing record low area show that sea ice resiliency is pretty terrible at this time. Furthermore, Northern Hemisphere snow cover totals also at or near new record lows hint that warming of the land masses surrounding the Arctic may be very rapid come mid to late March and throughout April. To this point, 10 day Euro model runs show a tendency for rapid warming over the Northwest Territories, Alaska, the Bering Sea, the Sea of Okhotsk, the East Siberian Sea, and far Eastern Siberia during this period even as the thaw line pretty much everywhere jumps swiftly northward.
A fading record El Nino in the Eastern Pacific will also tend to result in ample excess Equatorial heat heading northward. As a result, the overall risk of strong sea ice melt through the Summer of 2016 remains very high.