New Study Finds that Present CO2 Levels are Capable of Melting Large Portions of East and West Antarctica

If you’re a regular reader of this blog and its comments section, you’re probably more than a little worried about two bits of climate science in particular:

Our understanding of past climates (paleoclimate) and 5-6 C long term climate sensitivity.

And if you’re a frequent returner, you’ve probably figured out by now that the two go hand in glove.

******

Looking back to a period of time called the Pliocene climate epoch of 2.6 to 5.3 million years ago, we find that atmospheric carbon dioxide levels were somewhat lower than they are at present — ranging from 390 to 400 parts per million. We also find that global temperatures were between 2 to 3 degrees Celsius warmer than 1880s ranges, that glaciers in Antarctica and Greenland were significantly reduced, and that sea levels were about 25 meters (82 feet) higher than they are today.

(The Totten Glacier is one of many Antarctic land ice systems that are under threat of melt due to human-forced warming. A new paleoclimate study has recently found that levels of atmospheric greenhouse gasses that are below those presently in our atmosphere caused substantial Antarctic melt 4.23 million years ago. Image source: antarctica.gov.)

Given that atmospheric CO2 levels during 2017 will average around 407 parts per million, given that these levels are above those when sea levels were considerably higher than today, and given that these levels of heat trapping gasses are rapidly rising due to continued fossil fuel burning, both the present level of greenhouse gasses in the Earth’s atmosphere and our understanding of past climates should give us substantial cause for concern.

This past week, even more fuel was thrown onto the fire as a paleoclimate-based model study led by Nick Golledge has found that under 400 parts per million CO2 heat forcing during the Pliocene, substantial portions of Antarctica melted over a rather brief period of decades and centuries.

Notably, the model found that the West Antarctic Ice Sheet collapsed in just 100-300 years under the steady 400 ppm CO2 forcing at 4.23 million years ago. In addition, the Wilkes Basin section of Antarctica collapsed within 1-2 thousand years under a similar heat forcing. In total, the study found that Antarctica contributed to 8.6 meters of sea level rise at the time due to the loss of these large formations of land ice.

From the study:

We conclude that the Antarctic ice sheet contributed 8.6 ± 2.8 m to global sea level at this time, under an atmospheric CO2concentration identical to present (400 ppm). Warmer-than-present ocean temperatures led to the collapse of West Antarctica over centuries, whereas higher air temperatures initiated surface melting in parts of East Antarctica that over one to two millennia led to lowering of the ice-sheet surface, flotation of grounded margins in some areas, and retreat of the ice sheet into the Wilkes Subglacial Basin. The results show that regional variations in climate, ice-sheet geometry, and topography produce long-term sea-level contributions that are non-linear with respect to the applied forcings, and which under certain conditions exhibit threshold behaviour associated with behavioural tipping points (emphasis added).

This study began the publication process in 2016 when year-end atmospheric CO2 averages hit around 405 parts per million. By end 2017, those averages will be in the range of 407 parts per million. Even more worrying is the fact that CO2 equivalent forcing from all the various greenhouse gasses that fossil fuel burning and related industrial activity has pumped into the atmosphere (methane, nitrogen oxides, CFCs and others) will, by end 2017 hit around 492 ppm.

As a result, though conditions in Antarctica are presently cooler than during 4.23 million years ago, the considerably higher atmospheric greenhouse gas loading implies that there’s quite a lot more warming in store for both Antarctica and the rest of the world. A warming that, even if atmospheric greenhouse gasses remain at present highly elevated levels and do not continue to rise, could bring about a substantially more significant and rapid melt than during the Pliocene.

Links:

Antarctic Climate and Ice Sheet Configuration During Early Pliocene Interglacial at 4.23 Ma

NOAA ESRL CO2 Trends

NOAA’s Greenhouse Gas Index

East Antarctic Ice Sheet More Vulnerable to Melting than We Thought

Pliocene Climate

antarctica.gov

Hat tip to Spike

Grim News From NASA: West Antarctica’s Entire Flank Collapsing Toward Southern Ocean, At Least 15 Feet of Sea Level Rise Already Locked-in Worldwide

(Must-watch NASA presentation finding six Antarctic Glaciers in irreversible collapse.)

Human-caused heat forcing. From the top of the atmosphere to the bottom of the world’s oceans, there’s no safe place to put it. For where-ever it goes it sets in place conditions with the potential to unleash gargantuan forces.

481. Minus aerosols, that’s the equivalent CO2 heat forcing humans have now built up in the atmosphere due to a constant and rapidly rising greenhouse gas emission. By itself, this heat forcing, were it to remain in the world’s atmosphere and ocean system, is enough to melt all of West Antarctica, all of Greenland, and part of East Antarctica pushing sea levels higher by between 30 and 120 feet or more.

Inertia. Namely, the massive inertia in the Earth climate system creating a perceived ability to resist rapid destabilization due to the human insult. It’s the one hope scientists and policy-makers alike pinned on the possibility of bringing human greenhouse gas emissions down in time to prevent radical and damaging change.

Rapid glacier and ice sheet destabilization. What, by 2014, became understood as the new reality, as an ever-increasing number of the world’s glaciers displayed far less resilience than previously anticipated and were set in motion to an unstoppable and catastrophic reunion with the world’s oceans by human warming.

Now, a new NASA study finds that six of West Antarctica’s largest glaciers are in a state of irreversible collapse. These add to a growing tally of destabilized glaciers from Greenland to Svalbard to Baffin Island to Antarctica and beyond which, all together, show that at least a 15 foot sea level rise from human-spurred glacial release is now inevitable.

Their names were Pine Island, Thwaites, Haynes, Pope, Smith and Kohler

antarctica_screen_grab1_2

(The locations of West Antarctica’s ‘butcher board’ glaciers — those that are doomed to an inevitable embrace with the Amundsen Sea. Image source: NASA.)

At issue are six massive glaciers representing more than 1/3 of total the ice mass of West Antarctica and what could well be called its entire weak flank.

As early as 1968, this massive section of West Antarctica was listed as unstable. Since that time, human heat forcing has pumped higher and higher volumes of warmth deep into the Pacific Ocean. The warmth pooled in the depths, building, even as it rose up beneath Antarctica. Ocean circulation and Ekman pumping along the coast of Antarctica brought this warm water up from the depths where it traveled along the continental shelf zone to encounter Antarctica’s mile-high glaciers. The warm water did its work, unseen, for a time. Eating away at the bottoms of these glaciers and speeding their slide to the sea. The increased glacial melt and related fresh water outflow put a kind of cold water cap on the Southern Ocean around Antarctica. This cold cap gave the ever-warming bottom waters no outlet to the surface and so the heat concentrated where it was needed least — at the bases of massive ocean-fronting glaciers.

One section of West Antarctica, composed of the six glaciers now listed as undergoing irreversible collapse, was particularly vulnerable to this basalt melt and ocean upwelling heat forcing. For the glaciers there rested on a section of continental shelf well below sea level — extending scores of miles beneath the ice and on into interior Antarctica. As a result, newly undercut glaciers are flooded until they float, creating lift, reducing friction and rapidly speeding the glacier’s plunge seaward. Even worse, few sub-glacier ridges — speed bumps that glaciologists call grounding points — interrupt the more rapid flow of these glaciers once initiated.

(NASA slide-show illustrating the process of basal melt and grounding line retreat)

By earlier this year, a separate NASA study found that the Pine Island Glacier (PIG), one of the world’s largest glaciers and the most vulnerable ice sheet in West Antarctica, had entered a state of irreversible collapse. Now, the most recent study, led by glaciologist Eric Rignot at NASA’s Jet Propulsion Laboratory, finds that five of its fellows — Thwaites, Haynes, Pope, Smith, and Kohler — are following PIG’s lead.

Rignot’s findings could not be more stark:

“The collapse of this sector of West Antarctica appears to be unstoppable. The fact that the retreat is happening simultaneously over a large sector suggests it was triggered by a common cause, such as an increase in the amount of ocean heat beneath the floating sections of the glaciers. At this point, the end of this sector appears to be inevitable.”

In other words, over the course of decades-to-centuries, these glaciers will disintegrate and slide into the sea until they are no more. Years from now, their names will be a distant memory, reminders of a faded and far better time.

At Least 15 Feet of Sea Level Rise From Glacial Melt Now Locked-in

This year, the pace of new announcements for massive glaciers undergoing destabilization or irreversible collapse could best be described as terrifying and unprecedented. And each new announcement brings with it starker implications for both the ultimate pace and scope of global sea level rise.

Global sea level rise

(Current pace of global sea level rise at 3.26 mm per year is likely now set to rapidly accelerate coincident with the rapid acceleration and melt of an ever-increasing number of the world’s glaciers. Image source: AVISO.)

The amount of sea level rise to result from just the loss of the disintegrating section of West Antarctica described in the most recent NASA study amounts to at least four feet. But looking around the world we also find rapid destabilization of more than 13 glaciers encircling all of Greenland with one, the Zacharie Glacier, featuring an ice flow that stretches all the way to the center of the Greenland ice mass. Recent studies also find that the massive glaciers of Baffin Island and the world’s largest ice cap — the Austfonna glacier on Svalbard’s island of Nordaustlandet — are all locked in an inevitable seaward rush.

The total water composed in the moving and destabilized glaciers worldwide is now at least enough to raise world ocean levels by a total of 15 feet. But the inevitable loss of these glaciers tells a darker tale, one that hints that the 23 feet worth of sea level rise in all of Greenland’s ice and the 11-13 feet of sea level rise in all of West Antarctica’s ice may well be locked in to what is a growing daisy chain of explosive destabilization if human greenhouse gas levels aren’t radically drawn down.

In continuing to emit greenhouse gasses, we make the situation ever worse by imposing a heightening heat pressure on glacial systems that will both speed their release and ensure that an ever growing portion of the Earth’s ice ultimately melts. The current forcing though both extreme and dangerous is small compared to the potential forcing should we not rapidly reign in the human emission.

Links:

Must-Read NASA Study Showing Six of West Antarctica’s Glaciers in Irreversible Collapse

NASA Video: Antarctic Collapse Explained

Nature: Human Warming Now Pushing Entire Greenland Ice Sheet into the Ocean

Constant Arctic Heatwave Sends World’s Largest Ice Cap Hurtling Seaward

Doomed Pine Island Glacier Releases Guam-Sized Iceberg into Southern Ocean

Scientists: Warming Ocean, Upwelling to Make an End to Antarctica’s Vast Pine Island Glacier

NASA/UC Study: Warming Ocean Found to Melt Ice Sheets From Below

A Faustian Bargain on the Short Road to Hell: Living in a World at 480 CO2e

Hat tip to Peter Sinclair and Colorado Bob

 

Doomed Pine Island Glacier Releases Guam-Sized Iceberg into Southern Ocean

Science has confirmed it. Human-caused warming is killing Antarctica’s massive Pine Island Glacier (PIG). And this week’s release of a chunk of ice larger than Guam into the southern ocean is just one of the many major losses that will occur as part of what is now an inevitable demise of one of the world’s greatest glaciers.

(CNN provides this stunning NASA imagery sequence of the break-off of B-31, a 12×24 mile iceberg from the, now doomed, Pine Island Glacier.)

Heat-Charged Blow to The Soft Underbelly of Antarctic Ice Shelves

As human greenhouse gas emissions caused the world’s oceans to warm, upwelling currents delivered a portion of that heat to the continental shelf zone surrounding Antarctica. A fortress of ice, numerous glacial ice shelves thrust out from this frozen land and drove deep into the sea floor. Ocean-fronting glaciers featured submerged sections hundreds of feet below the sea surface.

The warming currents encountered these massive ice faces, eroding their undersides and providing pathways for ocean waters to invade many miles beneath the glaciers. These invasions subjected the vulnerable ice shelves not only to the heat forcing of an ever-warming ocean, but also to wave and tidal stresses. The reduction in grounding and the constant variable stresses set the glaciers into a rapid seaward motion.

Antarctica’s most vulnerable glaciers lie along its western out-thrust. Two, Thwaites and the Pine Island Glacier, have recently seen very rapid increases in forward speed. Of these, the Pine Island Glacier, according to a recent study, is undergoing the process of an irreversible collapse. What this means is that the glacier’s speed of forward motion is now too great to be halted. Inevitably, even if the climate were to cool, the entire giant glacier will be launched into the world’s oceans where it will entirely melt out.

PIG basal melt

(Pine Island Glacier underwater melt dynamics. Image source: Nature)

Guam-Sized Chunk of Ice to be One of Many

The Pine Island Glacier is massive, covering a total area of 68,000 square miles and, in some locations, rising to over 2,000 feet in height. It represents 10% of all the ice in the West Antarctic Ice Sheet, holding enough liquid water to raise sea levels by between 1 and 2.5 feet all on its own. And the now destabilized PIG is bound to put added stresses on the adjacent Thwaites glacier together with almost the entire West Antarctic ice system.

Over recent years, PIG’s forward speed has accelerated. Increasing forward velocity by 73 percent from 1974 to 2007. Surveys made since that time show an even more rapid pace. By January of this year, studies were finding that PIG had entered a sate of irreversible collapse. So it is little wonder that enormous chunks of ice are breaking off from this massive glacier and drifting on out into the Southern Ocean.

As of early this week, the immense ice island dubbed B31 measuring 12×24 miles in size (nearly 290 square miles), slid off its temporary grounding on the sea bottom and began its journey out into the Southern Ocean. There it will remain for years, plaguing the world’s shipping lanes as it slowly disintegrates into a flotilla of icebergs. It is just the most recent event in the now ongoing decline of PIG. And we can expect many, many more major ice releases as this vast Antarctic glacier continues its dive to the sea.

Links:

Humongous Iceberg Slowly Drifts Away From Antarctica

Scientists: Warming Ocean, Upwelling Make an End to Antarctica’s Vast Pine Island Glacier

Nature

Retreat of Pine Island Glacier Controlled by Marine Ice Sheet Instability

The Pine Island Glacier

The Thwaites Glacier

Hat tip to Colorado Bob who’s been tracking PIG since 1994